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1. INTRODUCTION 

It is common to find a data set in which several measurements have been made on each of the sampling 

units within it. Such data sets are often said to contain ‘multiple’ or ‘repeated’ measurements, or the 

data are said to be ‘clustered’ within the sampling units. If the multiple measurements are made at 

different times, the data are often termed ‘longitudinal’. If regression analysis is to be applied with such 

data sets, allowance must be made for the covariance amongst the residuals in each sampling unit that 

will arise from the fitted regression. If this is not done, bias may occur in the estimated covariance 

matrix of the parameter estimates from the fitted model.  

Various approaches have been proposed to deal with this problem (e.g. West et al. 1984; West, 1995; 

Pinheiro & Bates, 2000; Litière et al., 2007; Galbraith et al., 2010; Fitzmaurice et al. 2011; McNeish et 

al., 2017). An older approach has been to use generalized least-squares (GLS) regression. This involves 

incorporation, into least-squares regression theory, a weighting matrix designed to reflect, and allow 

for, the variance-covariance matrix of the error term of the model. Various works (e.g. Ferguson & 

Leech, 1978; Davis & West, 1981; West et al., 1986; Kauermann & Carroll, 2001; Fitzmaurice at al., 

2011; McNeish et al., 2017; West & Ratkowsky, 2022) describe this approach and ways that have been 

developed to estimate the matrix. A more recent approach, which has become widely adopted, is the 

use of ‘mixed’ models. Such models include ‘fixed’ effects; these relate the response variable of the 

model to predictor variable(s), irrespective of the sampling unit to which each observation belongs. 

They also include ‘random’ effects, which are particular to the sampling units and determine how the 

relationship between response and predictors is affected by the presence of the multiple measurements 

within the sampling units.  However, study of various of the works cited above will confirm that the 

approach to be used with such data sets should depend on the circumstances of the data themselves; 

there is no certainty that mixed models will necessarily yield better estimates of the parameters, or their 

covariance matrix, than other methods.  

McNeish et al. (2017) criticized strongly the frequent insistence over recent times that mixed models 

should be used to deal with such data sets. Further to their work, the present authors undertook 
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simulation studies to examine the efficacy of several regression methods with such data sets, using two 

examples which employed multiple linear regressions (West & Ratkowsky, 2022). To estimate the 

model parameters and their covariance matrix, they compared four methods, namely ordinary least-

squares (OLS) regression, generalised least-squares (GLS) regression using the ‘sandwich’ estimator 

(Kauermann & Carroll, 2001; Fitzmaurice et al., 2011; McNeish et al., 2017), ‘adjusted ordinary least-

squares’ (AOLS) regression (Davis & West, 1981; West et al., 1986) and the use of mixed models. 

All these methods produced unbiased estimators of the parameters. OLS and the sandwich estimator 

both underestimated the parameter standard errors. For the mixed models, it was found difficult to 

choose the most appropriate form of the model to apply. However, eventually a form was identified that 

generally provided an unbiased estimator of the parameter standard errors, although it sometimes gave 

problems when converging to a solution. AOLS gave an unbiased estimator of the standard errors, but 

occasionally yielded an estimate of the parameter covariance matrix that was not positive-definite. 

However, when each method worked satisfactorily, the mixed modelling approach provided an 

appreciably more precise estimator of the parameters than did AOLS, with parameter standard errors 

often being about 35% less than those with AOLS (West & Ratkowsky, 2022, Table 2).  

The present work undertakes simulations with the same two examples as used by West & Ratkowsky 

(2022). It examines the efficacy of using a GLS approach to fit the models that has not been used before 

in this context, namely, seemingly unrelated regression (SUR or SURE) (Zellner, 1962; Srivastava & 

Giles, 1987). The application of SUR is compared with the use of both mixed models and AOLS. Both 

SUR and AOLS involve a two-stage modelling process. The first stage involves fitting a model 

separately in each and every sampling unit, using the repeated measurements in each. The estimates of 

each parameter from all those first-stage models are then related to predictor variables that are properties 

of the sampling units themselves to develop second-stage models. The first- and second-stage models 

are then pooled and fitted as a single model to all the data from all the sampling units. This process 

means that both the SUR and AOLS systems are constrained in that each and every one of the sampling 

units in their data must have at least one more observation than there are parameters in the first-stage 

model so that it may be fitted in each sampling unit.  The mixed model system is not constrained in that 

way and is relevant whenever there is simply more than one observation in some or all of the sampling 

units. 

2. METHODS 

2.1. Examples 

The first of the two examples used here concerned stem wood volume production in plantation forests 

of radiata pine (Pinus radiata D. Don) in South Australia (Ferguson & Leech, 1978). The data consisted 

of several measurements of the total wood volume in tree stems (V, m3 ha-1) in each of a set of forest 

plots (the sampling units), measured at various ages (A, tens of years) when the forest was 10–55 years 

old. The number and ages of measurements varied between plots. The first-stage model fitted in each 

sampling unit was 

ln(V) = p1 + p2/A          (1) 

where ln(·) denotes natural logarithms and p1 and p2 were parameters. The parameter estimates from 

these models were then related to a measure of the productive capacity for growth of the site on which 

the trees of each plot were growing. This predictor (P, m3 ha -1) was particular to the plot concerned and 

was determined as the stem wood volume in the plot at 10 years of age; the use of such ‘phytocentric’ 

measures of site productive capacity is common in forestry science (West, 2015, Sect. 8.7). The second-

stage models were then  

p1 = p11 + p12 ln(P)         (1a)           

and 

p2 = p21 ln(P)                  (1b) 

where p11, p12 and p21 were parameters. Substituting Equations (1a, b) into Equation (1) yielded the full 

model relating wood volume to age and site productive capacity as 

                            ln(V) = p11 + p12 ln(P) + p21 ln(P)/A                (2) 
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After some consideration, this was used as the basis for the mixed model  

            ln(V) = (p11 + v11i) + p12 ln(P) + (p21 + v21i) ln(P)/A           (3) 

where v11i and v21i were random effects for the ith sampling unit. 

The second example (Grassia & De Boer, 1980) concerned the change between six months and eight 

years of age in the number of molar teeth (M) found at various ages (A, tens of years) in the mouths of 

each of a number of Australian wallabies (the sampling units) of different sexes (S, 1=male, −1=female). 

The first-stage model was 

            M = q1 + q2 ln(A)           (4) 

where q1 and q2 were parameters. The second-stage models were    

q1 = q11 + q12 S         (4a) 

and 

q2 = q21                     (4b) 

where q11, q12 and q21 were parameters. This yielded the full model relating tooth number to wallaby 

age and sex as 

                                            M = q11 + q12 S + q21 ln(A)                   (5) 

The mixed model then tested was 

                                 M = (q11 + w11i) + q12 S + q21 ln(A)                 (6) 

where w11i was a random effect for the ith wallaby. 

2.2. Simulation Data Sets 

For each of the P. radiata and wallaby examples, 1,000 simulated data sets were constructed for use in 

comparing results obtained with the various regression estimators being considered here. In each 

simulated data set for the P. radiata example, there were 20 plots, each with a productive capacity 

within the range 57–253 m3 ha-1 and each with 3–9 observations of volume at ages within the range 10–

55 yr. In the wallaby case, each simulated data set had 43 wallabies, 17 male and 26 female, with 3−24 

observations from each at randomly chosen ages between 0.5–8 yr, but with ages at least 73 days apart.  

The simulated data sets were based on chosen parameter values for Models (2) and (5) and assumed 

matrices representing the covariances between the residuals of the models. Sets of multivariate random 

normal deviates were determined to construct each simulated data set. Full details describing these 

processes are given by West & Ratkowsky (2022). 

2.3. Simulations 

For each simulated data set, the full models with fixed effects only (2 and 5) were fitted using OLS and 

AOLS regression. The mathematical details of AOLS are shown in the Appendix of West & Ratkowsky 

(2022). The first-stage models (1 and 4) were fitted independently to the data of each sampling unit 

(plot or wallaby) using OLS regression. Their parameter estimates were then treated as sets of response 

vectors (two sets for each example) and the second-stage models (1a, b and 4a, b) were then fitted 

jointly using SUR. The mathematical details of the methods used with SUR are given in the Appendix. 

The models with random effects (3 and 6) were fitted using the maximum likelihood methods of the 

NLMIXED procedure of the SAS® statistical package1. The OLS, AOLS and SUR models were fitted 

using computer programmes written by one of us (PWW); note that the MODEL procedure of the SAS 

package may be used also to fit SUR models. 

These processes yielded 1,000 estimates of the model parameters and their covariance matrices for each 

of the P. radiata and wallaby examples and for each of the four estimation methods, OLS, AOLS, mixed 

models and SUR.  

3. RESULTS 

Tables 1 and 2 show results copied from Tables 1 and 2, respectively, of West & Ratkowsky (2022). 

Those results had been obtained from the 1,000 simulations in both examples for OLS, AOLS and 

mixed models. The results obtained here for SUR have been added to both tables. 

                                                            
1Documentation for the SAS statistical package is available at   https://support.sas.com/en/documentation.html 

(accessed October 2024). 
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The results of Table 1 suggest that all methods yielded estimates of the parameters with little bias. For 

the present SUR results, this was confirmed as follows using the following formal test as described at 

Equation (27) of West et al. (1986). Suppose one has a B×1 vector, β̂, of parameter estimates from a 

model determined using a data set containing N observations and with a corresponding estimate of their 

B×B covariance matrix, V̂. Suppose it is desired to determine if those parameter estimates differ 

significantly from some chosen B×1 vector, β, of parameter values. Then, the test statistic F͂, determined as 

Table 1. For 1,000 simulations of both examples considered here, with each of four estimation methods (OLS, 

AOLS, mixed models and SUR as discussed in the text), results are shown for the population values of the model 

parameters assumed when constructing the simulation data sets and the average of the 1,000 estimates of the 

parameters obtained with each method. Results for OLS, AOLS and the mixed models are the same as shown in 

Table 1 of West & Ratkowsky (2022)  

Param-eter Population value OLS AOLS Mixed models SUR 

P. radiata example 

p11 3.957 3.930 3.930 3.962 3.965 

p12 0.697 0.704 0.704 0.698 0.697 

p21 -0.511 -0.518 -0.518 -0.519 -0.518 

Wallaby example 

q11 9.470 9.468 9.468 9.479 9.479 

q12 -0.711 -0.709 -0.709 -0.712 -0.712 

q21 1.480 1.474 1.474 1.481 1.481 

Table 2. Results for simulations as in Table 1 for the standard errors of the 1,000 parameter estimates obtained 

for each estimation method (shown as Population value) and the average of the 1,000 estimates of the standard 

error obtained with each method (shown as Simulation average) 

 

Param-

eter 

OLS AOLS Mixed model SUR 

Popul-

ation 

value 

Simulation 

average 

Popul-

ation 

value 

Simulation 

average 

Popul-

ation 

value 

Simulation 

average 

Popul-

ation 

value 

Simulation 

average 

P. radiata example 

p11 0.358 0.167 0.358 0.348 0.194 0.173 0.200 0.185 

p12 0.071 0.034 0.071 0.070 0.039 0.035 0.040 0.037 

p21 0.028 0.013 0.028 0.028 0.021 0.021 0.021 0.021 

Wallaby example 

q11 0.318 0.118 0.318 0.301 0.244 0.202 0.239 0.232 

q12 0.216 0.061 0.216 0.222 0.201 0.201 0.126 0.127 

q21 0.111 0.085 0.111 0.105 0.030 0.012 0.028 0.027 

 F͂ = (β− β̂ )'V̂-1(β− β̂ )/B,              (7) 

is distributed as the Fisher F-distribution, FB,N−B.  

This test was applied to the present SUR results by testing the departure of the vector of means of the 

N=1,000 simulation estimates (shown in the ‘SUR’ column of Table 1) of the parameters (B=3 for both 

examples) from the vector of their population values (shown in the ‘Population value’ column) and 

using the observed covariance matrix of the 1,000 estimates. There was no significant difference 

between the two parameter vectors (p<0.001), suggesting that SUR provided an unbiased estimator of 

the parameters. It had been concluded in the previous work that this was true also for the OLS, AOLS 

and mixed model results. 

Table 2 compares the average of the 1,000 simulation estimates of the standard errors of each of the 

parameters (Simulation average columns) of the two examples against the observed standard errors of 

the 1,000 estimates (Population value columns). As expected, OLS grossly underestimated the standard 

errors for it took no account of the correlation between the residuals from the fitted model in each of 

the sampling units. The AOLS, mixed models and SUR methods all closely estimated their population 

standard errors, with the exception of q21 in the wallaby example where the mixed model grossly under-

estimated the population value. It was found by West & Ratkowsky (2022) that replacing Model (6) 

with an alternative,  

                                   M = q11 + (q12 + w12i) S + (q21 + w21i) ln (A),        (8) 
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where w12i and w21i were random effects for the ith wallaby, would overcome this problem. However, 

this version of the model failed to converge satisfactorily in about 18% of the simulation data sets.  

The results of Table 2 suggest that SUR closely estimated the population standard errors. To undertake 

a formal test of those results, the parameter estimates and the corresponding estimates of their 

covariance matrix were tested, using Equation (7), for each individual simulation result, using B=3 for 

both examples and the number of observations in the SUR fit to the second-stage models, that is N=20 

for the P. radiata example and N=43 for the wallaby example. Table 3 shows the proportion of times 

that a statistically significant deviation was found between the observed parameter estimates and their 

population values. Those proportions correspond closely to what would be expected from F tests at 

p=0.1, 0.05 or 0.01. That is to say, it appears that SUR provided an unbiased estimator of the covariance 

matrix of the parameter estimates, consistent with the standard error comparisons in Table 2. In the 

previous work, this appeared to be true also for AOLS and the mixed models, or at least for the 

satisfactorily converged cases with Model (8) in the wallaby example. 

Also of note, for both examples, is that the standard error population values shown in Table 2 are much 

lower for the mixed models and SUR than they are for AOLS; they average about 40% lower over all 

the parameters in both examples. That is to say, both mixed models and SUR provided appreciably 

more efficient estimators than AOLS. 

Table 3. For both examples, the proportion of times that, from 1,000 simulations using the SUR method, the 

estimates of the parameters of the model differed significantly from their population values, at three arbitrarily 

chosen probability values 

Probability 
Example 

P. radiata Wallaby 

0.1 0.111 0.088 

0.05 0.047 0.045 

0.01 0.008 0.009 

4. DISCUSSION AND CONCLUSIONS 

SUR was devised initially (Zellner, 1962) to deal with data sets where several different response 

variables had been measured on a set of sampling units. It would be possible to simply fit a model for 

each of those variables separately with OLS. However, SUR allows that there may be some level of 

intercorrelation amongst the residuals of each of those models; the additional information then used by 

SUR to fit the models jointly should render it a more efficient estimator than OLS, at least 

asymptotically (Srivastava & Giles, 1987, p. 11). The present authors reviewed some 14 examples from 

their principal area of interest, forest science, where a comparison had been made between results when 

several models were fitted either separately with OLS or jointly with SUR (West & Ratkowsky, 2023). 

None of these involved a two-stage model, but all were small sample examples. It was concluded that 

SUR might sometimes be a little more efficient than OLS, but there was generally little advantage 

gained in the goodness-of-fit to the data and sometimes there was a slight disadvantage.  

A circumstance in forest science where SUR has been found useful involves the construction of models 

that predict the biomasses of each of different parts of individual trees (leaves, stems, roots etc.) in 

relation to more easily measured tree characteristics, such as stem diameters or heights. Additional 

models are then added to the system to predict the total tree biomass, models that incorporate the same 

parameters as used in the models for the separate parts. SUR is used to fit these models jointly and the 

system ensures that predicted values of the separate parts sum correctly to the predicted total tree 

biomass. There are numerous examples of this (e.g. Bi et al., 2004; Trautenmuller et al., 2021; Xiong 

et al., 2023). 

The present work suggests that SUR may offer appreciable advantage when applied to data sets that 

contain multiple measurements of some response variable in individual sampling units. However, the 

circumstances considered here apply only to models that can be developed through a two-stage process. 

At the first stage, a relationship between the set of response and predictor variables must be established 

separately for each and every sampling unit. At the second stage, each parameter estimate from the first-

stage models is related to predictor variables that are fixed characteristics of the sampling units 

themselves. SUR may then be used to fit the second-stage models jointly.  
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Simulations were carried out here involving a two-stage model system with two small sample examples. 

The simulations were based on longitudinal data sets with repeated measurements at different ages of a 

certain characteristic in each sampling unit. When SUR was used to fit the second-stage models jointly, 

it was found to provide an unbiased estimator of both the parameters of the full model and their 

variances. This contrasted markedly with results when the full model was fitted using OLS regression, 

which produced an unbiased estimator of the parameters, but grossly underestimated their variances. 

This was a consequence of the failure of OLS to account for the correlations between the residuals in 

each sampling unit that resulted from its fit to the full model. In effect, SUR avoids the consequences 

of those correlations because its fit to the second-stage models involves only one observation (of each 

of the first-stage parameters) from each sampling unit. 

These results using SUR were compared with simulation results for two other methods. The first, 

AOLS, is also based on the two-stage model approach, but fits the full model using a GLS approach 

that involves use of the residuals from the OLS fit (see the Appendix of West & Ratkowsky 2022) and 

has been shown theoretically to provide an unbiased estimator of the parameters in small samples (West 

et al., 1986). Indeed, in the present examples, AOLS was found to provide an unbiased estimator of 

both the parameters and their variances, but it was a markedly less efficient estimator than SUR (Table 2). 

The second comparison was with the use of mixed models, a method that also attempts to take account 

of the correlations amongst residuals in each sampling unit when the full model is fitted. In general, this 

method was found to provide unbiased estimators of both the parameters and their variances and was 

equally as efficient as SUR. However, experience with this approach in previous work (West & 

Ratkowsky, 2022) found that it was both difficult to determine an appropriate parameterisation to use 

for the mixed models and that the algorithms used to fit them could fail quite often; no such difficulties 

were encountered in applying the algorithm used here to fit SUR (shown in the Appendix). However, 

mixed models have an advantage over SUR (and AOLS) in that they are not based on the two-stage 

model approach. Both SUR and AOLS require that the first-stage model actually be fitted in each 

sampling unit. This requires that there must be at least one more observation in each sampling unit than 

there are parameters in the first-stage model. That restriction does not apply in the case of mixed models 

where some sampling units may have only one or very few observations. 

In conclusion, the present results suggest that SUR may offer an opportunity to be used to provide an 

unbiased and efficient estimator when fitting regression models in data sets that contain multiple 

measurements in individual sampling units. However, its use is restricted in that the data must be 

appropriate to allow the two-stage modelling approach. Also, it must be borne in mind that the present 

work has considered linear models only. Of course, nonlinear models may be used also with SUR, as 

discussed briefly by Srivastava & Giles (1987, Sect 11.6). Many other issues surround the use of 

nonlinear regression as various texts discuss (e.g. Ratkowsky, 1983, 1990; Draper & Smith, 1988; 

Pinheiro & Bates, 1995; Davidian & Giltinan 2003). It is obvious that many other examples need to be 

considered to develop these conclusions further.  
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APPENDIX  

Seemingly Unrelated Regression (SUR) 

The principles of SUR as applied here are described at pp. 3–17 of Srivastava and Giles (1987). The 

model system used is based around M multiple linear regression equations, each of which is based on a 

set of T observations of M characteristics that have been made on a set of sampling units that are of 

interest to the observer. The ith (i=1…M) of these equations may be represented as 

                                                             yi = Xiβi + ui,  (A1) 

where yi is a T×1 vector of responses of the ith variable being considered, Xi is a T×Ki matrix of 

predictors for that variable, βi is a Ki×1 vector of parameters to be estimated and ui is a T×1 vector of 

residuals. These models may then be written as  

  y1      X1  0   .  .  .  0       β1      u1    

  y2      0   X2  
.  .  .  0      β2      u2    

  ·       ·     ·           ·      ·      ·    

  ·   =    ·    ·         ·      ·   +   ·       (A2) 

  ·       ·    ·         ·      ·      ·    

  yM      0    0  .  .  . XM      βM      uM    

and expressed in the compact form 

                                                              y = Xβ + u, (A3) 

where y and u are MT×1 vectors, β is a K×1 vector, where K (=Σi=1…M Ki) is the total number of 

parameters and X is an MT×K matrix. 
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SUR then attempts to take account of any intercorrelation that occurs between the residuals of the 

various models (A1). If this intercorrelation exists, then fitting those models jointly with the SUR 

techniques may yield a more efficient estimator than if the models were fitted separately. To do this, 

SUR assumes that the residuals are related between each model through an MT×MT covariance matrix 

Ψ, which is the expected value of uu'. In general, values for this matrix are unknown a priori and 

methods to obtain an estimate of it, Ψ,̂ are given by Srivastava and Giles (1987). One such method there 

is termed the ‘restricted residual’ method. The first step in this is to fit each of the M models (A1) 

separately by ordinary least-squares regression to yield T×1 vectors of estimates of the residuals, û1, û2 

… ûM. These vectors are then used to estimate M2 scalar variance and covariance estimates, ŝij 

(i,j=1…M), as  

                                                             ŝij = (ui' uj)/Tij,   (A4) 

where 

                                                          Tij = [(T−Ki)(T−Kj)]
½    (A5) 

These scalars may then be arranged to form an M×M variance-covariance matrix. Occasionally it may 

be found that this matrix is not positive definite, in which case there are two possible alternatives. The 

first is to simply replace all the Tij with T, although the estimators ŝij may not then be unbiased. The 

second is to obtain unbiased estimators using 

                                                          Tij = tr(P̂i P̂j),  (A6) 

where 

                                   P̂i = IT – Xi(Xi'Xi)
-1Xi',  i=1…M (A7) 

and IT is a T×T identity matrix. Neither of these alternatives was found necessary to apply in the present 

work. Note that in all these computations ŝij=ŝji. The estimator Ψ̂ may then be constructed as the MT×MT 

matrix 

     ŝ11 IT   .  .  .   ŝ1M IT    

             ·                    ·    

Ψ ̂ =            ·                    ·         .                       (A8) 

             ·                    ·    

     ŝ1M IT   .  .  .  ŝMM IT    

The full SUR model (A3) may then be fitted using generalised least-squares regression, where an 

estimate, β̂ , of the vector of parameters, β, may be determined as  

                                      β̂ = (X'Ψ̂ -1X)-1X'Ψ̂ -1y                   (A9) 

and an estimate of their K×K covariance matrix, V(β̂), as 

                                                V(β̂ ) = (X'Ψ̂ -1X)-1,            (A10) 

as described in Srivastava and Giles (1987) at Equations (2.5) and (2.7). Because this method uses an 

estimate of the matrix Ψ that is based on observed residuals, it is the most efficient estimator of the 

model only asymptotically. 
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