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1. INTRODUCTION 

Proactive maintenance is a proactive policy that aims to identify, analyze, and correct the root cause of 

a failure before it causes further problems and leads to machinery failure. Implementing this policy can 

enhance reliability, availability, maintainability, and safety (RAMS), [11]. As depicted in Figure 1, a 

digital twin (DT) is a digital version of a physical object or system. It can successfully model a virtual 

object from its physical counterpart. The main function of a DT is to provide a two-way data flow 

between the virtual and physical entity so that it can continuously upgrade and improve the physical 

counterpart, [5,6]. NASA first used the term digital twin in 2010, which was described as “an integrated, 

multi-physics, multi-scale, probabilistic simulation of a vehicle or system that uses the best available 

physics models, sensor updates, fleet history, etc., to simulate the life of its flying twin.” [32,38]. Mi-

chael Graves was the first to propose the term DT, [12,37]. Recently, DT has been utilized in various 

manufacturing fields, and it is promoting positive developments in these fields, [16,19]. Kritzinger, [23] 

recognized three levels of DT integration, namely digital model, digital shadow, and digital twin, as 

shown in Figure 2. Attaran, [3] mentioned the main DT applications in manufacturing, as presented in 

Figure 3. Many diagnostic tools are available to identify and analyze the root causes of failures. Failure 

Mode Effects and Criticality Analysis (FMECA) is the most common diagnostic method, which consists 

of two analyses; the Failure Mode and Effects Analysis (FMEA) and the Criticality Analysis (CA), 

[11,18,37,40,43]. DT enables maintenance management to accurately identify equipment status, proac-

tively predict faults, and enhance reliability, [1,2,4].  DT contains a set of adaptive models that can 

emulate the behavior of a physical system in a virtual system, obtaining real-time data to update itself 

along its life cycle, [3,39]. Figure 4 shows an equivalent representation of the general architecture of 

DT, [56]. 
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Fig1. Digitaltwin illustration. 

 

Fig2. Digital twin Levels of integration. 

 

Fig3. Digital twin applications in manufacturing. 
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Fig4. Equivalent representation of the general architecture of DT. 

Organizations constantly seek ways to enhance operations efficiency, reduce costs, and improve com-

petitiveness. In this effort, Lean Six Sigma (LSS) tools provide structured approaches to streamline 

operations and improve efficiency and effectiveness. The main objectives of LSS are to improve process 

quality, improve production rate, reduce delivery time, reduce production cost, and improve customer 

satisfaction. DMAIC is a specific framework for process continuous improvement within LSS that in-

cludes, (D) defining the problems and objectives, (M) measuring the current situation, (A) analyzing 

the problem's root causes, (I) implementing a workable solution (I), and (C) controlling the process to 

ensure and maintain the continuous improvement. Figure 5 shows the most popular LSS tools. By using 

these tools and techniques, the organization can improve business processes, [70,71].   

 

Fig5. Main LSS tools in maintenance operations, [70,71]. 

This study focuses on the performance and applications of DTs and LSS in proactive maintenance pol-

icies and the importance of maintenance management for improving equipment RAMS (reliability, 

availability, maintainability, and safety).   

After this introduction, this paper is organized as follows: In Section 2, the literature review is carried 

out. In Section 3, the research gap is identified. Section 4 includes the frameworks for proactive mainte-

nance. Finally, Section 5 focuses on conclusions and future directions. 
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2. LITERATURE REVIEW 

Firstly, the DT technique and its applications in proactive maintenance are reviewed. Then the literature 

on LSS technology and its applications in proactive maintenance are investigated. 

2.1. Review of Digital Twins in Proactive Maintenance    

Digital twins (DT) can provide a real-time response to the manufacturing system and increase flexibility 

and reliability, [13]. According to Hu, [16] Figure 6 illustrates some of the key milestones in the devel-

opment of DT. In 2016, Siemens used DT devices in Industry 4.0, resulting in a tremendous growth in 

related publications. 

 

Fig6. The milestones of DT development, [16]. 

Proactive maintenance can reduce failure risks, improve system uptime, extend the equipment life, and 

lower process downtime losses. DT can model individual equipment or processes to identify variations 

that indicate the need for preventive maintenance. The goal is to estimate, predict, detect, or diagnose 

the condition of the component for more effective maintenance. This can prevent costly failures before 

a serious problem occurs. They can also determine if better materials or processes can be used or help 

improve cycle times, load levels, and tool calibrations, [20,46]. The application of DTs enables the 

monitoring of the condition and prediction of abnormal conditions in machine tools. This greatly en-

hances the safe and efficient operation of mechanical process systems. Parameter optimization plays a 

crucial role in the optimization of the operation process. Traditional parameter optimization methods 

rely on manual experience and often involve high levels of uncertainty. DT operation process facilitates 

the suppression of errors and the optimization of operating parameters, thus laying the foundation for 

achieving high-quality and high-level operation, [16]. 

DT represents the innovation that has spurred evolution and adaptation in the aerospace industry. For 

instance, employing DT for an aircraft or rocket ship is believed to enhance global tracking accuracy 

by 147%. In a recent survey, 75% of Air Force executives favored DT solutions for their industry. DT 

enables engineers to ensure the safety of the aircraft by looking into the potential aircraft’s problem 

before any danger. For example, Boeing, the world’s largest aerospace company, uses DT solutions to 

improve the safety of the parts and systems used to manufacture commercial and military airplanes. 

DTs of specific aircraft models enable technicians to use augmented reality (AR) overlaying the DT 

data on the real plane, facilitating faster and more accurate inspections and improving maintenance 

efficiency. As a result, Boeing has achieved a 40 percent improvement in the quality of the parts and 

systems, [29,50].  According to GE Research, [9] GE’s DT technology is revolutionizing how the avi-

ation industry handles maintenance. Predicting engine wear, such as the blade wear on the GE90, saves 
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airlines millions of dollars in costs and prevents aircraft from landing unexpectedly, especially in areas 

with sand, a major contributor to the problem. 

According to Pinello [33], the European Space Agency (ESA) also adopted the DT approach for its 

ExoMars mission. They built Amalia, a physical and DT of the Rosalind Franklin rover. This duo serves 

a vital purpose: anticipating and solving potential problems before they occur on the Martian surface. 

Overall, using both physical and DTs significantly increases mission success by minimizing risks and 

improving rover performance. 

DTs have been increasingly used in condition monitoring and fault diagnosis (CMFD) in recent years. 

Table (1) shows the survey of DTs in maintenance over the past years. The details of these studies are 

explained in the next section.

Table 1. Survey of DTs in Proactive Maintenance, (2017 to August 2024). 

Period # References 

2017 2 [40,42]  

2018 3 [23,44,50]   

2019 7 [1,2,29,34,41,43,53]  

2020 4 [7,14,19,25]  

2021 10 [13,20,27,31,35,37,47,48,51,52]  

2022 9 [10,15,22,30,32,45,56,57,59]  

2023 12 [4,6,9,26,28,33,36,39,46,48,55,58]  

August 2024 
10 

[3,5,8,11,16,17,21,24,49,54] 

Tao, [42] adopted the concept of a DTs workshop, providing theoretical support for industry applica-

tions by discussing its characteristics, composition, operating mechanism, and key technologies. Tao, 

[44] suggested a five-dimension DT model for complex systems to improve the accuracy of prognosis. 

Qiao, [34] developed a data-driven model for DT, together with a hybrid model prediction method based 

on deep learning that creates a prediction technique for enhanced machining tool condition prediction. 

Xu, [53] studied a two-stage DT-assisted method based on deep migration learning. This method iden-

tifies potential problems that may not have been considered during the design phase and uses deep 

neural network-based diagnostic models for fault diagnosis.  Aivaliotis, [2] presented a methodology to 

calculate the Remaining Useful Life (RUL) of machinery equipment by utilizing physics-based simu-

lation models and the DT concept, to enable predictive maintenance for manufacturing resources using 

Prognostics and health management (PHM) techniques. 

Luo, [25] suggested a hybrid DT model that consists of model-based DTs and data-driven DTs to take 

into consideration the environmental variations in the life cycle of the tool. To realize reliable predictive 

maintenance of CNC machine tools, a hybrid approach driven by DT is studied. Xia, [51] developed a 

DT model for machinery fault diagnosis where the DT is built by establishing the simulation model 

which can be updated through the real-time data collected from the physical asset. The proposed DT is 

validated through a case study of triplex pump fault diagnosis. Xiong, [52] investigated the predictive 

maintenance model of an aero-engine driven by DTs. Through the consistent evaluation of virtual data 

assets and real data assets, the effectiveness of the model is verified. Experimental results show that 

when the dataset used to train the model is 80%, the model prediction has high accuracy. Wang, [48] 

developed a DT model including a geometric model, physical model, behavior model, and rule model 

to perform fault prediction of the autoclave to generate simulated data to address the problem of insuf-

ficient data for fault prediction. The effectiveness of the proposed model is verified through result anal-

ysis. Olatunji, [31] discussed an overview of the application of DT technology in the fault diagnosis 
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and condition monitoring of wind turbine mechanical components. Qin, [35] proposed a DT model of 

life-cycle rolling bearing driven by the data-model combination. By comparing the obtained DT result 

with the signal measured in the time domain and frequency domain, the effectiveness of the developed 

model is verified. 

Refer to Xiong, [52] DTs solutions are widely used in the aerospace industry for aircraft maintenance 

and tracking, weight monitoring, accurate determination of weather conditions, flight time measurement, 

catastrophic failure analysis, safety and security management, and failure detection. Moghadam and 

Nejad, [30] presented a DT-based condition monitoring and fault diagnosis (CMFD) approach for off-

shore drivetrain systems, where the DT in the study includes a torsional dynamic model, online meas-

urements, and fatigue damage estimation. The remaining useful life of the drivetrain can be estimated 

by means of the DT. Kim, [22] utilized various environmental information to design a predictive model 

for offshore WT power generation based on DT. The proposed system enables an accurate representa-

tion of the offshore WT power generation and makes contributions to the safety of the power system. 

Hosamo, [15] suggested a DT predictive maintenance framework for air handling units (AHU) to over-

come the limitations of facility maintenance management (FMM) systems now in use in buildings. The 

proposed framework was tested in a real-world case study. 

Zhong, [58] reviewed the increasing research interest in DTs-based predictive maintenance in the man-

ufacturing industry. The predictive maintenance approaches based on DTs are introduced. Wang, [48] 

proposed a real-time planetary gear fault diagnosis method by combining the atom search optimization-

support vector machine and DTs which can significantly improve the operation of wind turbines. 

Reimann, [36] developed a DT model of a wind turbine. The model was evaluated in simulations using 

real measurement data of the wind speed from a research wind turbine. Luo, [25] suggested a DT system 

for wind turbine blades, which can construct a DT in virtual space that is completely equivalent to the 

wind turbine blades, reflecting in real time the operational data and status of the wind turbine blades, 

and realizing online monitoring and predictive maintenance of the wind turbine blades. Van-Dinter, [46] 

conducted domain analysis to model key features and synthesize relevant literature. A case study on 

fault diagnosis using DFDD in a vehicle body-side production line is presented. The results demonstrate 

the superiority and applicability of the proposed method. Yang, [55] developed a complex fault diagno-

sis method using DT by combining virtual and real data. Field data from an offshore platform in the 

South China Sea were used to demonstrate the effect of the suggested method. The results indicate that 

the proposed method is very effective for complex faults of production control systems. 

Inturi, [17] reported a review study focusing on the definitions, methods, applications, and performance 

of different aspects of DTs in the context of transportation and industrial machinery. This review sum-

marizes how individual aspects of DTs are extremely useful for lifelong design, manufacturing, or de-

cision-making. Liu, [24] developed an innovative DT-based anomaly detection framework for real-time 

tool condition monitoring (TCM). The ‘‘data flow connections’’ involve real-time measured vibration 

data and machine tool numerical controller (NC) signals providing real-time information on machine 

tool dynamics and various machining processes. Experimental studies have demonstrated the effective-

ness of the proposed method, especially for complicated machining processes. Gao, [8] discussed the 

concept of post-disaster recovery for power DTs systems to study rational approaches to enhance the 

post-disaster monitoring capability of such systems after significant disasters. The results indicate that 

the proposed branch-and-limit algorithm greatly enhances the monitoring capabilities of the resource-

constrained power system, thus enhancing its stability and emergency response mechanisms. Xue, [54] 

developed a DT-driven fault diagnosis method for CNC machine tools. By using the spindle of a CNC 

machine as an example, the deterioration of spindle stiffness during operation is effectively diagnosed, 

which confirms the effectiveness and applicability of the proposed method. Karkaria, [21] discussed a 

DT framework for predictive maintenance of long-term physical systems. Using tire health monitoring 

as an application, they demonstrate how the DT framework can be used to enhance the safety and effi-

ciency of automobiles. The proposed framework effectively embodies a physical system, leveraging 

big data and machine learning for predictive maintenance, model updates, and decision-making. Finally, 

Wang, [49] developed a novel intelligent state evaluation and maintenance arrangement (iSEMA) sys-

tem based on DT, which can accurately evaluate the state of wind turbines, detect faults in the early 

stage, and provide useful information or warnings to operators and help them to efficiently arrange 

maintenance tasks.  
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2.2. Review of Lean Six Sigma in Proactive Maintenance   

LSS tools have been increasingly used in proactive maintenance in recent years. Table (2) shows the 

survey of LSS tools in maintenance over the past years. For example,  Al Farihi,et al., [60] proposed a 

lean maintenance methodology in an automotive company to reduce machine breakdown and mainte-

nance downtime and improve process efficiency. Several steps were used to solve the problem: root 

cause analysis, determining the TPM pillars applied, RCM, and realization of TPM pillars.  Trubetskaya 

et al., [78] developed an LSS-DMAIC framework for optimizing maintenance shutdown performance 

in the industry.  They presented a case study applying the proposed model to Ireland’s largest dairy 

processing site to optimize the annual maintenance shutdown. The objective was to deliver a 30% re-

duction in the duration of the overhaul, enabling an extension of the processing season.  Gomaa, [70,71] 

discussed the importance of LSS tools in proactive maintenance management. LSS critical failure fac-

tors (CFFs) in project management were discussed. A generic LSS-MM framework was proposed and 

validated with a case study conducted in a petrochemical company in Egypt. A case study of a feedwater 

pump station in a steam system has been used to illustrate the proposed framework. Results indicated 

that the proposed methodology is successful in identifying the critical equipment and improving mainte-

nance efficiency and effectiveness. For example, overall equipment effectiveness (OEE) improved from 

50% to 68%, the sigma level improved from 2.53 to 2.88, and maintenance process efficiency improved 

from 62.3% to 69.7 %. Imanov et al., [73] conducted a Six Sigma DMAIC framework for the identifi-

cation of its applicability in the development of a maintenance task card for an engine replacement on 

the Boeing 747-8 using PM, and the essential results can be summarized as follows: Engine replacement 

maintenance task cards decreased by 18 items, Total saving man hours on engine replacement consist 

of 68 h., and Total saving man hours on equipment removal and installation consist of 48 h. 

Table 2. Survey of LSS in Proactive Maintenance, (2014 to August 2024). 

Period # References 

2014 1 [80] 

2015 1 [61] 

2016 0 - 

2017 2 [69,81] 

2018 2 [62,76] 

2019 0 - 

2020 5 [65,66,67,72,75] 

2021 1 [73] 

2022 2 [64,74] 

2023 6 [60,68,70,77,78,79] 

August 2024 2 [63,71] 

 

3. RESEARCH GAP ANALYSIS 

The literature review shows that the application of DT and LSS techniques in proactive maintenance 

remains very important for managing the maintenance of critical equipment to improve equipment 

RAMS (reliability, availability, maintainability, and safety) and achieve maintenance excellence. How-

ever, there is still a need for a common platform based on creating a physical model via a common 

methodology. This is a requirement for implementing the DT and LSS concept of proactive maintenance. 
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Moreover, implementing DT technology, for maintenance activities in a production plant, requires cre-

ating a DT for each machine. Furthermore, to the authors' knowledge, there is no research demonstrating 

that the structure and tools of DTs and LSS have been combined into a hybrid framework. Finally, a 

more detailed review of the literature should also be conducted to identify further gaps, which will be 

addressed within the framework of constructing and fine-tuning the proposed model.  

4. PROPOSED FRAMEWORKS FOR IMPROVING PROACTIVE MAINTENANCE 

Firstly, the DT framework is proposed to improve proactive maintenance. Then the LSS framework is 

suggested to enhance proactive maintenance. 

4.1. DTs Frameworks for Improving Proactive Maintenance 

As mentioned earlier, manufacturing maintenance costs and downtime losses are very high in different 

sectors, which justifies the investment in creating DTs to optimize maintenance activities. Figure 7 

shows a DT model in maintenance, [10]. According to Dihan [5], data analysis is the technology driver 

of a successful DT system. Since data is the fundamental difference between a successful and unsuc-

cessful system, proper guidance of data structure should be given due attention. Figure 8 shows the DT 

data analysis process for building a successful DT. 

 

Fig7. DT model in maintenance. 

 

Fig8. DTs Data analysis process, [5]. 

 

Hosamo, [15] suggested a DT predictive maintenance framework for air handling units (AHU). The 

proposed framework utilizes DT technology for fault detection and diagnostics and predicts the condi-

tion of the building components so that the facility management staff can make better decisions at the 

right time. Figure 9 shows the principle of a DT in proactive maintenance. The proposed framework 
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includes three main steps, Data acquisition, predictive maintenance process, and BIM model for infor-

mation visualization and monitoring. Spatial information can be obtained from the BIM model. The 

BIM model was integrated with predictive maintenance results to support decision-making by develop-

ing a plug-in extension for Autodesk Revit using C sharp so that the FM team can easily understand the 

data. The three main levels of this framework will be explained in detail in the following sections. For 

facility management, COBie (Construction Operations Building Information Exchange) and Industrial 

Foundation Classes (IFC) are information exchange specifications for the lifetime capture and transfer 

of information. Figure 10 shows COBie components. 

 

 

Fig9. DT predictive maintenance framework, [15]. 

 

Fig10. Standard COBie components, [15]. 

Mihai et al., [27] developed a framework that aims to achieve optimized predictive maintenance by 

leveraging predominantly time-indexed streaming sensor data, along with configuration data coming 

from the digital twin of the Cyber-Physical Factory. The developed framework is illustrated in Figure 

11, which consists of: the data acquisition block, the pre-processing block, the database, the time-series 

anomaly detection block, the RUL predictor block, and the monitoring dashboard. 
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Fig11. A Digital Twin Framework for Predictive Maintenance, [27]. 

Karkaria, [21] introduced a DT framework for proactive maintenance of long-term physical systems. 

Figure 12 shows the tire health DT framework demonstrating the flow of information, and important 

components of DT like offline training, model update, and decision making. As shown in this figure, 

the digital twin begins with the offline training of the Tire Health Temporal Fusion Transformer (TFT) 

model in Step 1, leveraging historical datasets which has operating parameters (𝑇�!) - conditions under 

which the tire operates, usage parameters (𝑈�!) - how the tire is used, and state parameters (𝑀�!) - the 

current condition of the tire. Additionally, within our digital twin framework, we get our dataset with 

inputs derived from a physics-based Tire Design Finite Element Method (FEM) integrating physical 

insights with measured data. Incorporating a physics-based Tire Design Finite Element Method (FEM) 

is crucial to accurately understand the tire's physics-based state, ensuring a comprehensive analysis of 

its condition through the integration of physical principles with observed data. Then the Tire Health 

TFT model, a critical component of the Tire Health Digital Twin, facilitates real-time predictions of the 

damage state. A continuous quantity, named as Remaining Casing Potential (RCP), is considered as the 

damage state parameter). RCP serves as a key indicator of tire endurance damage, allowing for proac-

tive maintenance decisions. The predictions by the Tire Health TFT model are subsequently compared 

with real-world instances of tire damage. This comparison allows us to quantify the discrepancy, effec-

tively measuring the difference between the model's predictions and the actual tire damage data in Step 

2. We utilize observed discrepancies to refine our Tire Health TFT model. It is important to highlight 

that, following an update, our model evolves into a hybrid version. Despite this transformation, we 

continue to refer to it as the Tire Health TFT model for consistency and clarity in our discussion in this 

paper. Then the updated Tire Health TFT model, with the Tire State Decision Algorithm in Step 3, 

informs timely tire replacement decisions. Thus, our tire health digital twin has the surrogate model, 

which is updated in real-time, and aids in making predictive maintenance decisions. 

 

Fig12. Tire health digital twin framework, [21].
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4.2. LSS Frameworks for Enhancing Proactive Maintenance 

Trubetskaya et al., [78] developed an LSS framework for improving maintenance operations. Figure 13 

illustrates a graphic of the DMAIC, TAM, and LSS-DMAIC approaches and how they could be visual-

ized to complement each other. These are important to consider in the further DMAIC-TAM methodol-

ogy enhancements as three distinct tools working towards a common goal. On the other hand,  Gomaa, 

[70,71] proposed a general framework for LSS to improve maintenance processes and validated it 

through a case study conducted in a petrochemical company, as shown in Table (3), [60,62,64,70,71,78].  

 

Fig13. Visualize DMAIC, TAM, and TPM approaches that complement each other, [78]. 

Table3. Proposed LSS Roadmap for improving maintenance operations. 

Approach Maintenance objectives Main LSS Tools 

Current  

Situation 

Analysis 

- Maintenance process description 

- Maintenance KPIs dashboard 

 Process mapping (process layout, process     

             flow chart, and SIPOC diagram) 

 Voice of the customer (VOC) 

 Maintenance performance evaluation 

 Leading and lagging KPIs 

 Benchmarking 

 Performance gap analysis 

 KPIs dashboard 

 Define the problem statement  

 Establish the objectives and targets  

 Responsibility matrix (RACI) 

 Prepare a Project Charter 

 Construct LSS-DMAIC framework 

Kaizen  

Approach 

- Improving maintenance Staff's culture 

& productivity 

- Enhancing maintenance resource 

productivity 

 Visual control (5S) 

 Standardize work (SW) 

 Root cause failure analysis (RCFA) 

 Mistake proofing (Poka-yoka) 

Lean  

Approach 

- Improving maintenance process value-

added 

- Reducing maintenance process wastes 

 Total productive maintenance (TPM) 

 Overall equipment effectiveness (OEE) 

 Value-added time analysis 

 Value stream mapping (VSM)  

 Lean waste analysis (8 wastes) 

 Just in time (JIT) 

 Breakdown structure analysis 
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Approach Maintenance objectives Main LSS Tools 

 Networking and Gantt chart 

Six Sigma 

Approach 

- Reducing equipment failures 

- Reducing equipment variance 

 Critical to quality (CTQ) analysis 

 Sigma-level analysis 

 SQC for failure analysis 

 Pareto analysis of main failures 

 Root cause failure analysis (RCFA) 

 Cause and effect diagram (Fishbone) 

 Failure mode effect analysis (FMEA) 

 Equipment reliability analysis 

 Reliability centered maintenance (RCM) 

5. CONCLUSION AND FURTHER WORK 

Proactive maintenance is a policy that aims to identify the root cause of a failure and correct it before it 

causes further problems and leads to machinery failure. Implementing this policy can enhance reliability, 

availability, maintainability, and safety (RAMS). This paper focuses on reviewing the applications of 

digital twins (DT) and Lean Six Sigma (LSS) in proactive maintenance. DT can be used as a data-driven 

digital concept or technology to effectively address critical equipment maintenance issues. DT enables 

maintenance management to accurately determine equipment status, proactively predict faults, and en-

hance reliability. LSS is the industry's most recognized approach to continuous improvement, focusing 

on eliminating waste, reducing variation, and improving process efficiency, effectiveness, and customer 

satisfaction. The application of DT and LSS technologies remains a critical proactive technology for 

critical equipment to improve equipment RAMS and achieve maintenance excellence. Several DT and 

LSS frameworks for proactive maintenance have been discussed. Furthermore, this study provides a 

comprehensive roadmap for future research initiatives aiming to utilize technology design teams' capa-

bilities fully. To the authors' knowledge, this is the first time that the structure and tools of DTs and 

LSSs have been combined in a hybrid framework. 

In future activities, the author plans to integrate and implement DT methodology and Lean Six Sigma 

approach into a more general maintenance management framework for critical equipment whose main 

role will be to assess and improve the health status of machines, improve reliability, and plan mainte-

nance activities. 

Abbreviations 

ATM Turnaround maintenance 

CMFD Condition monitoring and fault diagnosis  

DT Digital twins  

LSS Lean six sigma 

RAMS Reliability, availability, maintainability, and safety 
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