

By Polygonal Path to Exact Inverse Fine Structure Constant

Janez Špringer*

Cankarjeva cesta 2, 9250 Gornja Radgona, Slovenia, EU

*Corresponding Author: Janez Špringer, Cankarjeva cesta 2, 9250 Gornja Radgona, Slovenia, EU

Abstract: The polygonal path was proposed instead of circulation to calculate the exact inverse fine structure constant on Bohr orbit.

Keywords: Circulation, polygonal path, double surface, inverse fine structure constant

1. INTRODUCTION

Following the double surface concept [1] the elliptic length n expressed in Compton wavelengths of the matter can be deduced from the average elliptic-hyperbolic length s(n) given by the next formula:

$$s(n) = n \left(2 - \frac{1}{\sqrt{1 + \frac{\pi^2}{n^2}}}\right). \tag{1}$$

In the case of the electron orbiting the nucleus in the ground state of Bohr atom the natural elliptic length n = 137 is expected to belong to the average elliptic-hyperbolic length s(n) which at the same time expresses the inverse fine structure constant α^{-1} . Unfortunately, the calculated value $s(n) = 137,036\,006\,254$ is somehow too high compared to the recommended or recently measured values of the inverse fine structure constant α^{-1} as presented in Table1.

Table1. Some recommended and recently measured values compared to the calculated inverse fine structure constant α^{-1} on Bohr orbit.

Inverse fine structure constant α^{-1}	Elliptic length	Average elliptic-hyperbolic length s(n)
	n	
$\alpha_{Bohr \ orbit}^{-1}(1)$	137	137.036 006 254
$\alpha_{CODATA\ 2014}^{-1}[2]$	< 137	137.035 999 139
$\alpha_{CODATA\ 2022}^{-1}[3]$	< 137	137.035 999 177
$\alpha_{measured}^{-1}[4]$	< 137	137.035 999 206

Let us find some possible explanation for a noticed discrepancy between the offered values and calculated value on Bohr orbit.

2. POSSIBLE EXPLANATION

It can be assumed that matter does not orbit in a circle but travels along a polygonal path of *N*-sided polygon around the center. Then pseudo π^* replaces π in equation (1) as follows:

$$\pi^* = Nsin\frac{\pi}{N}.$$
(2a)

Here N is number of polygon sides. And

$$s(n) = n \left(2 - \frac{1}{\sqrt{1 + \frac{\pi^{*2}}{n^2}}} \right).$$
(2b)

If the number of polygon sides N is somehow proportional to the elliptic length n then the difference between π and pseudo π^* can be perceived only at the enough short elliptic length n. Such, for instance, could be the elliptic length n of Bohr orbit.

International Journal of Advanced Research in Physical Science (IJARPS)

3. CALCULATION

Let's imagine that the 129-sided polygon replaces a circle. Then consequently with the help of (2a) the next pseudo π^* replaces π :

$$\pi^* = Nsin\frac{\pi}{N} = 129sin\frac{\pi}{129} = 3.141\ 282\ 121\ 798\ 650\ \dots$$
(3)

And the next inverse fine structure constant α^{-1} is calculated applying the elliptic length n = 137 and pseudo $\pi^* = 3.141\ 282\ 121\ 798\ 650$ in the equation (2b):

$$\alpha^{-1} = s(n) = 137 \left(2 - \frac{1}{\sqrt{1 + \frac{3.141\,282\,121\,798\,650^2}{137^2}}} \right) = 137.035\,999\,139\,387\dots$$
 (4)

4. RESULT

The calculated inverse fine structure **constant** α^{-1} given with the help of speculated 129-polygonal path around nucleus in Bohr orbit equals the recommended $\alpha_{CODATA \ 2014}^{-1}$ value [2]:

$$\alpha^{-1} = 137.035\ 999\ \mathbf{139} \dots = \alpha_{CODATA\ 2014}^{-1}.$$
(5a)

And the last recommended $\alpha_{CODATA\ 2022}^{-1}$ value [3] is very close to the concerned number:

$$\alpha^{-1} = 137.035\ 999\ \mathbf{139} \dots \approx \alpha_{CODATA\ 2022}^{-1} = 137.035\ 999\ \mathbf{177}.$$
(5b)

5. CONCLUSION

The question arises as to whether the up to date value of $\alpha_{CODATA\ 2022}^{-1}$ has moved away from the truth or from the apparent truth.

DEDICATION

To Saint Nicholas and subtlety

REFERENCES

[1] Janez Špringer. " Offered Inverse Fine Structure Constant" International Journal of Advanced Research in Physical Science (IJARPS), Vol 11, issue 07, pp. 1-3., 2024.

[2] NIST. (2014). CODATA Value: Inverse fine-structure constant. The NIST Reference on Constants, Units and Uncertainty. US National Institute of Standards and Technology.

[3] https://physics.nist.gov/cgi-bin/cuu/Value?alphinv. Retrieved December 2024.

[4] Morel, L., Yao, Z., Cladé, P. *et al.* Determination of the fine-structure constant with an accuracy of 81 parts per trillion. *Nature* 588, 61–65 (2020).

Citation: Janez Špringer. " By Polygonal Path to Exact Inverse Fine Structure Constant" International Journal of Advanced Research in Physical Science (IJARPS), vol 11, no. 12, pp. 1-2, 2024.

Copyright: © 2024 Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.