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1. INTRODUCTION 

We have focused traditionally our attention on fitting a straight line to data [1-10], because this 

problem is very common in applied science. Nevertheless, multiple linear regression (MLR) analysis 

is one of the most widely used [11-18] of all statistical tools. It is a prolongation of the linear 

regression where one response is linked to a number of independent variables, being used in a variety 

of circumstances: i) when it is known from theoretical considerations in the matter that the 

relationship follows that form; ii) or when the exact relationship connecting y and the x’s, either is 

unknown or is too complicated to be used directly, being thus presumed than an approach of this kind 

is suitable. 

The numerical calculations necessary to carry out the least squares analysis of multivariable 

relationships are often lengthy and tedious. Nevertheless, a mode of to arrange the work is shown in 

this contribution allowing the easy computation by using modern electronic computer or a 

spreadsheet. Basic equations are written both in traditional and in matrix form. MLR is an essential 

part of the model-dependent optimization techniques [19-20] and has extensive application in many 

subject areas, as we will have occasion to check at the end of this contribution, in which in tabular 

form selected applications of the MLR method in various areas are shown. 

We follow in this contribution the same scheme as in previous [1-2, 6-7] reviews and book chapters. 

First, we review sequentially the various aspects that make up MLR. Subsequently, we collect in 

tabular form a hundred of selected applications, paying special attention to those of the analytical and 

physical-chemical nature. 

Abstract: An overview on multiple linear regression (MLR) is envisaged in this paper. All but the final 

section is devoted to a discussion of the basic concepts of MLR. The corresponding MLR equations are 

derived and presented in a useful form for computing. However, the entirely general matrix approach to least 

squares applicable to any linear regression situation is also envisaged. In the final section selected analytical 

and physicochemical applications are shown in tabular form. MLR is one of the most widely used statistical 

tool and found applications on a number of areas such as quantitative structure property relationships 

(QSPR), quantitative structure retention relationships (QSRR), quantitative structure-transformation 

relationships (QSTR), molecular linear free energy relationships (MLFER) and quantitative structure activity 

relationships (QSAR), solvent polarity and solvatochromic effects, parameter estimation methods, correction 

of spectral (matrix) interferences, prediction, modelling and optimization, Fourier transform near infrared 

spectroscopy (NIR-FT) and multicomponent spectrophotometric analysis, and in many other areas. 
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2. THE BASIC MODEL 

For simplicity we shall consider first the case of two independent variables only [21-33]. Suppose that 

there is a relationship between the true value of a response i (mean value) and the value of 

independent variables x1i and x21 (regressors); this can be expressed as a plane in three dimensions 

 
0 1 1 2 2i i i

x x                                                                            (1) 

The generally adopted practice of denoting random variables by Greek letters such as beta and their 

realization by small letter of the Latin alphabet is followed, in order to maintain a clear distinction [5] 

between parameter and their estimates. It is called first order model with two independent variables 

(linear in the parameters and linear in the independent variables). The first subscript, 1 or 2, describes 

[27] the independent variable. The second, i, makes reference [27] to the observational unit from 

which the observations on y and the independent variables were taken.  

The parameter 1 reveals the average change [21, 29] in  per unit increase in x1 when x2 is held 

constant. Likewise, 2 reveals the average change in the  [21, 29] when x2 is changed one unity, 

when x1 is held fixed. When the effect of x1 on the mean response does not depend on the level of x2, 

and correspondingly the effect of x2 does not depend on the level of x1, the two independent variables 

do not interact having additive effects. Thus, the first order regression model is devised for 

independent variables whose effects on the mean response are additive or do not interact. The 

parameters 1 and 2 are commonly called partial regression coefficients because they reflect the 

partial effect of one independent variable when the other independent variable is included in the 

model and is held constant. Regression (Eqn. (1)) involves three dimensional, so that the complete 

picture cannot be represented on graph paper. For usual representation a three-dimensional model or 

diagram is required. Many computer packages for experimental design have the facility to produce 

three-dimensional diagrams. 

The linear additive model can be extended to include any number of independent variables,. The 

generalization to more parameter involves merely the writing out of longer but precisely similar 

expressions, i.e. p, with p+1 parameters j (j=0,1,…p) being estimated in those cases [27] in which the 

linear model includes the intercept 0 . Instead of a regression line, one has to deal with a regression 

surface at k=2 (and with a regression hypersurface at k >2). In the general case, this is a response 

surface. In constructing a response surface, the numerical values of independent variables (factors) are 

laid off on the coordinate axis of a factor space. Experimental conditions (x1i, x2i) (i=1,2,…k) have 

been run yielding observations y1, y2, …yk... then adding the experimental error (random error) to the 

hypothetical model and by dropping the i-suffix throughout we have the approximate model 

0 1 1 2 2i
y b b x b x                             (2) 

The random variability of y’s is explained by imposing the component i on the "pure”  linear function 

0 + 1 x1 + 2 x2. 

We assume that the independent variables x1 and x2 can be manipulated or observed error-free, and 

only the dependent variable y is corrupted by measurement (all the errors in the y, and none in the 

x’s). We shall assume that the repressors vectors are not linearly dependent. For k=2 this say these are 

not constant k1 and k2 that k1x1 + k2x2 = 0, for j=1,2,…n: if this were not true, x1 and x2 would be 

perfectly related and the parameters, 1, 2, would be confounded. It would them not possible to 

estimate the parameters separately but only some linear combination of them. When the errors 

affecting the x’s are errors of control instead of errors of measurement, i.e., errors made in attempting 

to set x1, x2,… equal to their respective nominal values x1’, x2’,...then the methods of this contribution 

are pertinent, if the errors made in adjusting x1, x2,… to their respective nominal values are mutually 

independent (or uncorrelated at least). 

The i have in addition, the following [1, 4, 8, 34] properties: 

a) The error i is independent of x1i and x2i. 

b) The expected value of i is zero; our observed y is an unbiased estimate of  , that is E(y)= .  
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c) The  are statistically uncorrelated, i.e., the expected population value of i j for any pair of points 

(ij) is zero, cov(i, j) = 0.  

d) The variance of  is y
2
, which remains constant for all values of x1 and x2 (homocedasticity), or in 

any case is known, at least up to a common scalar factor in all variances (heterocedasticity).  

e)  is a normally distributed random variable; measurement errors follow a Gaussian distribution.  

The unknown constants of proportionality p (p=0,1,2) are p variously termed as parameters, 
constants or coefficients. The xji (j=1,2) may be called independent variables; predictor variables or 

just predictors while y may be referred to as the dependent variable, the predicted variable, the 
outcome measurement or the criterion. However, as long as we deal with random variables the sense 

of the terms “dependent" and "independent” is strictly defined. Therefore, it seems reasonable, when 

it comes to regression relationships, to replace the term "independent variable” with an explanatory 
variable [21] and the term “dependent variable” with the variable being explained. The use of the 

concepts of dependence and independence requires great caution.  

3. APPROXIMATION  

We have the model (1) and must somehow estimate the unknown parameters 0, 1 and 2 by statistics 
(i.e. functions of the data); we will obtain a fitted equation 

0 1 1 2 2
ŷ b b x b x                              (3)          

The usage of small roman letters b0, b1 and b2, to indicate estimates of the parameters given by Greek 

letters 0, 1, and 2 is standard [5]. However, the representation 
0

̂ , 
1

̂ , and 
2

̂ for the estimates is 

also usual. It is then meaningful to ask what the true value of the parameters is, though by the 
imprecise nature of measurements we can never hope to determine it with absolute certainty. It is 

relatively easy to agree that the “better” the selection of the values bi, the smaller the differences  

 1/2 ˆ
i i i

e w y y                          (4) 

which are called weighted residuals and are estimates of the measuring error i in the sample under 
consideration. Parameters of the approximating function [35] are frequently derived using least 

squares methodology. Assuming that the xi’s are precisely known (i.e. xi
2
=0), selection of the 

parameters of the function describing the approximate model is made from the viewpoint of 

minimization of the sum of squares of the weighted residuals 

   
22 ˆ

i i i i i
Q p w e w y y                          (5)  

where the w’s are a priori fixed weighting coefficient [1, 5-7, 34] measuring the importance of 
particular observations in the sum. If the weighted errors are normally distributed, then with 

wi=0
2
/i

2
 corresponds to the maximum likelihood objective function [26-27, 36]. Statistically the 

principal advantage of the least squares criterion is that it produces best linear unbiased estimates. 

That is, among all possible unbiased estimators of the ’s that are expressible as linear combinations 
of the scores, only least squares estimators have the lowest possible variance across successive 

samples. A statistic is considered to be an unbiased estimator of a parameter if the mean of the sample 

distribution of the statistics equals the parameter.  

4. CENTERING 

From the fact that the point  1 2
, ,y x x  where ,y

1
,x and 

2
x , are the weighted means of the variables 

for the set of k observations  

i i

i

w y
y

w




                         (6) 

1

1

i i

i

w x
x

w




                         (7) 
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2

2

i i

i

w x
x

w




                         (8) 

lies on the plane, it follows that by centering the data the model can be converted [22, 24, 32] in 

   1 1 1 2 2 2
y y x x x x                              (9) 

This form takes advantage of the fact that for any least squares fit the constant b0 is always of the form  

0

1

p

i i

i

b y b x


                         (10) 

for p constants fitted. In this case we need to find only the coefficients b0, b1 and b2. In any case, 

centering is also a necessary preliminary for obtaining the correlation matrix of the variables.  

5. SCALING  

It is possible to simplify the process of finding the equation to the regression plane by normalizing all 

the variables x1, x2 and y, by the use of equations [22, 24] 

 
 

2
1, 2i i i i

i

ii
i i

x x x x
Z i

Sx x

 
  

 
                   (11) 

 
2

yy
i

y y y y
G

Sy y

 
 


                       (12) 

making each new variable have zero mean and unit sum of weighted squares  

0iZ G                         (13) 

2 2
1

i
wZ wG                         (14) 

We note that the coded quantities Zi (i=1,2) (and G) are simply convenient linear transformations of 

the, original xi’s and yi, respectively, and so expressions containing the Zi, can always be readily 

rewritten in terms of the xi’s (and y).  

Another very useful version of autoscaling in common practice [37-39] in the chemometrics literature 

implies measurements to be normalized in the way (z-transformation, normalized variables) 

 i i

i

i

x x
Z

s


                        (15) 

being si the standard deviation of xi measurements. 

This kind of transformation constitutes an essential part [22] of a good computer routine. The major 

advantages of coding are:  

a) it reduces by one the size of the matrix to be inverted later, being on this way helpful when fitting 

data via a pocket calculator. In larger matrices, say 5x5 and higher this may often lead to the 

occurrence of round off errors, when the matrix is inverted, even when the work is performed in an 

electronic computer. 

b) the numerical values implied in matrix manipulation [30] are smaller, particularly the products and 

sum of products, and therefore are simpler to dealt with and do not suffer as much from round-off 

errors.  

c) it allows to detect easily the dependence in the normal equations; an important property of the Zi’s 

values is that their covariance matrix is the same [38] as the correlation matrix of the xi’s. 
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It is to be emphasised, however, that the geometric interpretation of the parameter estimates evaluated 

by coding means is generally different [24] from the interpretation of those parameter estimates using 

uncoded factor levels.  

6. THE NORMAL EQUATIONS  

By using Eqns. |11| y |12|, the centered data given by Eqn. |9| are transformed to a new scale  

1 11 1 2 22 2yy
G S S Z S Z                         (16) 

the new model to be adjusted being of the form  

1 1 2 2
G Z Z                           (17) 

where  

11

1 1

yy

S

S
                         (18) 

22

2 2

yy

S

S
                         (19) 

are new coefficients to be estimated from the transformed data (G, Z1, Z2)  and represents scaled form 

of the original coefficients 1 and 2, and =/Syy. Note that equations for normalized variables has 

no free term. 

Thus the model (17) relates the observations [23] to the known transformed data (Gi, Z1i, Z2i) 

i=1,2,…n and the unknown 1 and 2  by n equations. 

Expressed in matrix form [22, 30, 33, 40-42] 

G Z                          (20) 

where G is the vector of observations (n x 1), Z is the matrix of independent variables Z1 and Z2 of 

known form (n x p),  is the vector of parameters to be estimated (p x 1) and   is a vector of errors (n 

x 1)  

               (21) 

The least squares estimator of α has to minimize the weighted sum of the squares of the residuals. 

       

   

2
1 1

1 1 1 1

ˆ ˆ ˆ

2

i i i
Q w w G G G G W G G

G Z W G Z G W G Z W G Z W Z

  

    

 

   

      

         


               (22) 

where the prime signifies the transpose of the matrix (i.e. rows and columns interchanged) , and W
-1
 is 

the inverse of the matrix of errors, W, which is diagonal with unequal diagonal elements, and G which 

is diagonal with unequal diagonal elements, and G  is the column vector of predicted values of G  for 

given values of Z1 and Z2 
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                    (23) 

Note in this case, the use of 0 to denote [22] a large triangular block of zeros.  

Note that the fitted values ˆ
iy  are obtained by evaluating  

Ĝ Z                        (24) 

By differentiating Eqn. (22) with respect to α we obtain [42] 

  1 1
2 2

dQ
Z W G Z W Z

d






                         (25) 

and by equalling to zero we obtain the normal equations 

 1 1
Z W Z A Z W G

                         (26) 

where Z’ is the transpose of matrix Z, and A is the matrix of  parameter estimates a1 and a2 of 1 and 

2, respectively, giving de minimum sum of squares of (weighted) residuals 

 

              (27) 

The product of two matrices exists if and only if the number of rows in the second matrix [22, 30, 42] 

is the same as the numbers of columns in the first matrix. By carrying out the products Z’W
-1
Z and 

Z’W
-1
 we obtain 

112 1

221 2

1

1

y

y

rr a

rr a

E A C

    
     

                                                                                                                             (28) 

Where r12 = r21 is the correlation between Z1 and Z2 and riy is the correlation between Zi (i=1,2) and, so 

that from Eqn. (14) 

2 2

1 2
1wZ wZ                         (29) 

and 
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  

   

1 1 2 2 12

12 21 1 2
2 2

11 22
1 1 2 2

w x x x x S
r r wZ Z

S Sw x x w x x

 
   

 




 
                 (30) 

  

   
2 2

iyi i

iy i

ii yy
i i

Sw x x y y
r wZ G

S Sw x x w y y

 
  

 




 
                  (31) 

Transforming the regression problem into a form in which it involves correlations is good in general 
because it makes all the numbers in the calculation lie between -1 and 1. When numbers are all of this 

order the adverse effects of roundoff error are minimized. While the dangers are slight when only two 

variables are involved this is very important when many predictor variables are being manipulated in 

a computer. 

The matrix Z’W
-1

Z=E is symmetric, that is the element in the ith row and jth column [22, 30, 42] is the 

same. The transpose is identical in every element to the original matrix, that is if A’=A, then the 

matrix is called [22, 30, 42] a symmetrical matrix. 

   By multiplying the matrix E by A we obtain the set of normal equations 

1 12 2 1

12 1 2 2

y

y

a r a r

r a a r

 

 
                  (32a,b) 

The use of matrices in statistics has many advantages [43] such as: 

a) It summarizes expressions and equations very compactly. 

b) It facilitates our memorizing these expressions. 

c) One the problem is written and solved in matrix terms, the solution can be applied to any regression 
problem [22] not matter how many terms are in the regression equation. 

d) It greatly simplifies the procedures for deriving solution to multivariate problems. 

7. SOLVING THE NORMAL EQUATIONS  

To solve the set of linear equations (Eqns. (26) or (28)) it is necessary to take the inverse of the matrix 

E=Z’W
-1

Z. Give this new matrix the name D and call its elements Dij. Although the procedure that 
follows is laborious [30], the knowledge of matrix D is essential for the evaluation of the precision of 

the estimated parameter values. The E array can be eliminated from the left side of Eqn. (30) if both 

sides are premultiplied by its inverse E
-1

 

1
A E C DC


                        (33) 

so that the inverse of a non-singular square matrix (same number of rows and columns) has the 

property 

1 1
E E EE I

 
                        (34) 

Where I is the identity matrix of ones in the diagonal elements and zero on the off diagonal elements 

(of order p ). So we get 

  

1 r
12

r
12

1

é

ë

ê
ê

ù

û

ú
ú

D
11

D
12

D
21

D
22

é

ë

ê
ê

ù

û

ú
ú

=
1 0

0 1

é

ë
ê

ù

û
ú                   (35) 

and thus we have 

  

D
11

+ r
12

D
21

+ r
13

D
31

D
12

+ r
12

D
22

+ r
13

D
32

r
12

D
11

+ D
21

+ r
23

D
31

r
12

D
12

+ D
22

+ r
23

D
32

é

ë

ê
ê

ù

û

ú
ú

=
1 0

0 1

é

ë
ê

ù

û
ú                  (36) 

Solving the resulting set of linear equations derived from (36) and taking into account that if every 

element of a matrix has a common factor [22, 30] it can be taken outside the matrix we get 
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2

11 12 1212

21 22 12

1

11

1

D
D D rr

D D r

 




   
   
      

                                (37) 

(conversely, if a matrix is multiplied by a constant c, every element of the matrix [22, 30] must be 

multiplied by c). 

By multiplying the matrix D by C we obtain the estimated parameters a1  and a2 

1 12 2

1 2

121

y yr r r
a

r





                      (38) 

2 12 1

2 2

121

y yr r r
a

r





                      (39) 

Before Eqn. (2) can be used for practical purposes, one should change back to the natural scale, using 

the equations 

( 1, 2)
yy

i i

ii

S
b a i

S
                       (40) 

2

0

1

i

i i

i

b y b x




                         (41) 

8. ALTERNATIVE WAYS OF DERIVING THE NORMAL EQUATIONS 

The coefficient parameters of Eqn. (17) are estimated from the condition 

    
2 2

1 1 2 2
minQ w G E G w G Z Z                          (42) 

The condition for the minimum of the function Q is defined in the same manner as in the case of a 

function of a single variable 

 1 1 2 2 2

1

2 0
Q

w G Z Z Z 



    


                     (43) 

 1 1 2 2 1

2

2 0
Q

w G Z Z Z 



    


                     (44) 

On multiplying out these two expressions, on rearrangement we obtain the normal equations in the 

form 

2

1 1 2 1 2 1
a wZ a wZ Z wGZ                        (45) 

2

1 1 2 2 1 2
a wZ Z a wZ wGZ                        (46) 

which according to Eqns. (29), (30) and (31) gives Eqn. (28). 

In general, least squares estimates are always such that the vector of residuals from the fitted least 

squares equation is normal to each of the regressor vectors [24]. By multiplying Equation (17) by 

w the weighted regression model has the form 

1 1 2 2 *G w w Z w Z f                        (47) 

where 

*f w                        (48)   

Under (47) the data have to satisfy the following equation 
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* *

1 1 2 2* *G Z Z f                         (49) 

Where *G and 
*

iZ are pseudovariates [24] 

*G G w                        (50) 

*

i iZ Z w                        (51) 

The variance of *f  is given by 

       
2

*
yy yyyy

w w
Var f Var w wVar wVar Var cte

S S wS

 
       

 
 
 
 

              (52) 

It is possible to perform the weighted analysis by carrying out an ordinary unweighted least squares 
analysis using the pseudovariates. 

9. THE VARIANCE-COVARIANCE MATRIX  

Let  designate the column vector of the regression coefficients 1 and 2, and let the expected value 
of A be. Then 

    

    

    

1 1 2 2

1 1

2 2

2

1 1 1 1 2 2

2

2 2 1 1 2 2

E A A E a a
a

a

E

a a a

a a a

   




  

  

     




  

  

 
 
        
  
  

 
 
 
  
  
  
 

               (53) 

The covariance between two random variables, ai and aj (with a joint distribution) is defined [11, 30, 

33, 41] as the expectation value of the product of deviations of ai and aj from their expected values 

(true or population means) i and j, respectively. On the other hand, the variance is a special case 

[11] of the covariance of a random variable with itself. On this way, the variance-covariance matrix 
V(a) is given by 

    
 

 
1

2

2

1 2

2

2 1

cov ,

cov ,

a

a

V a E A A
a a

a a

 




          
 
 

                 (54) 

Taking into account that A=D C=DZ’W
-1

 and =E(A)=DZ’W
-1

E(G), we get 

       

         

1 1 1 1

1 1 1 0 1 0

V a E DZ W G DZ W E G DZ W G DZ W E G

E DZ W G E G DZ W G E G E DZ W G DZ W G

   

   

      

      

 
  

   
      

              (55) 

where 
0G is a random vector with independent elements 

                    (56) 
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Using the transpose rule and nothing that D and W
-1

 are symmetric 

   1 0 0 1 1 0 0 1
V a E DZ W G G W ZD DZ W E G G W ZD

           
  

                (57) 

On the other hand 

                (58) 

Gi
2
 is the variance of observation i and cov(Gi,Gj) is the covariance of observations i and j.  In many 

circumstances the Gi may expect to be independent if they come from separate isolated [41], non-

interfering measurements. When the Gi’s are independent, uncorrelated, cov(Gi, Gj) for all ij is equal 
to zero. 

In those cases in which the variances are not equal, the observations G1, G2,…Gk have variances 

2
/w1, 

2
/w2, …

2
/wk where 2

 is unknown but the constants w1, w2,…, wk that determine the relative 
accuracy of observations are known, and thus, we have 

            (59) 

Then 

  1 1 2 2
V a DZ W WW ZD D 

                       (60) 

W
-1
W=I. The matrix D is called an error matrix. 

10. SAMPLE ESTIMATES OF THE POPULATION VARIANCES G/Z
2
 AND Y/X

2
  

The sum of the squares of the residuals divided by its associated degrees of freedom may be taken as 

the sample estimate sG/Z
2
 of the population variance of residuals, G/Z

2
 

 
2

2

/

ˆ

3
G Z

w G G
s

N







                      (61) 

One parameter is lost with a corresponding lost also in the data as the differences ,iy y  i=1,2,…n 

denote only (n-1) separate pieces of information given that their sum is zero, whereas y1, y2,…yn 

denote n separate pieces of information. The residual mean square estimates G/Z
2
 assuming our 

chemical model is adequate, but no otherwise. 

Substituting the estimated value of Ĝ in Eqn. (72) and making operations we have 

 
2 2 2

1 1 2 2 1 2 1 2 121 1 2 22

/

1 2 2 2

3 3

y y

G Z

a r a r a a a a rw G a Z a Z
s

n n

     
 

 


               (62) 
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So that 
2 2 1i iwZ wG    and 1 2 12wZ Z r . Taking into account the set of normal equations 

(28) we get finally 

1 1 2 22

/

1

3

y y

G Z

a r a r
s

n

 



                      (63) 

On the other hand, by applying Eqn. (12) to an experimental and a fitted G value we get 

ˆˆ i i
i i

yy

y y
G G

S


                        (64) 

since the average of the ˆ
iy is the same of the 'y s  

 0 1 1 2 1 2

0 1 2 0 1 1 2 2

ˆ
ˆ

wy b b x bx wx wx
y b b b b b x b x y

w w w w

 
        
   
   

              (65) 

By multiplying Eqn. (75) through
1/2w , summing and squaring, on rearrangement we get 

   
22 ˆˆ

i yy i i iw y y S w G G                        (66) 

2 2

/ /y x yy G Zs S s                        (67) 

11. PRECISION OF THE ESTIMATED PARAMETERS VALUES A
1
 AND A

2 
 

The information concerning the precision of the estimated parameter values is comprised in the 

variance-covariance matrix V(a). The product of sG/Z
2
 and the D matrix provides the estimated 

variance-covariance matrix 

 
 

 
1

2

2 2

/ /22

12121 2

2
12

2 1

1

11cov ,

1cov ,

G Z G Z

a

a

V a Ds s
rrs a a

ra a s

  




   
   

  
  

                            (68) 

Each of the upper left to corner right diagonal elements of V(a) is an estimated variance of the 

parameter estimates sai
2
; those elements correspond to the parameter as they appears in the model 

from the left to right. The off diagonal of the matrix represent the covariance between a1 and a2 (or 

identically between a2 and a1): 

1 2

2 2 2

/2

12

1

1
a a G Zs s s

r
 


                      (69) 

    212
1 2 2 1 /2

12

cov , cov ,
1

G Z

r
a a a a s

r


 


                                (70) 

12. PRECISION OF THE PARAMETERS IN THE ORIGINAL MODEL: COLLINEARITY 

By applying the random error propagation law [11] to Eqn. (41) we get 

2 2 ( 1,2)
i i

yy

b a

ii

S
s s i

S
                       (71) 

and taking into account Eqns. (69) and (67) 

1 1

2

/2 2 2

/2 2

11 12 11 12 11

1 1

1 1

yy yy y x

b a G Z

S S s
s s s

S r S r S
  

 
                   (72) 
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2 2

2

/2 2 2

/2 2

22 12 22 12 22

1 1

1 1

yy yy y x

b a G Z

S S s
s s s

S r S r S
  

 
                   (73) 

r12
2
 is the degree of non-orthogonality between x1 and x2. It measures the fraction of the variation in 

one independent variable that is accounted for by the variation in one independent variable that is 

accounted for by the other in an equation of the form x1= A + B x2; when r12
2
=0 we have complete 

(linear) independence of x1 and x2 or “orthogonality”. When r12
2
  0, we have some degree of 

dependence of x1 and x2 determine how much the variance of bi (i=1,2) is inflated. The term 1/(1-r12
2
) 

is named the variance inflation factor (VIF), an indicator of collinearity [44-47], also called 

multicollinearity (the best known remedial procedure to dealt with collinearity is ridge regression). A 

VIF larger than 5 or 10 is generally considered large and is an indication that the corresponding 

coefficient is poorly estimated. Two key problems arise under collinearity: variable effects cannot be 

separated and extrapolation is likely to be seriously erroneous. 

Extreme non-orthogonality has several undesirable consequences in least squares regression. The 

columns of the design matrix Z are nearly dependent, Z’W
-1
Z is nearly singular and the estimation 

equation for the regression parameters is ill-conditioned. Parameter estimates may be unstable (small 

changes in the data causes large changes), which may be unreasonable large (in absolute value) or 

have the wrong sign. Standard errors on estimates are inflated (reflected in their large variances), 

magnifying the effects of errors in the regression variables, leading easily to unreliable predictions. 

Though exact collinearity seldom occurs in real experimental situations [44], near-collinearity is a 

frequent occurrence in real life data. 

Once the variances and covariances of a set of quantities are known, they may be used to evaluate 

[48] the variances and covariances of other quantities. The equation (18) 

   cov , cov ,k l

k l i j

i j

f f
f f x x

x x

 


 
                     (74) 

allows the evaluation of the covariance of functions fk and fl from the covariance of xi and xj; the 

summation is over all i and j. 

   If we apply Eqn. (74) to Eqn. (40) (i=1,2) we obtain 

     1 2

1 2 1 2 1 2

1 2 11 22

cov , cov , cov ,
yy

Sb b
b b a a a a

a a S S

 
 

 

  
  
  

                 (75) 

and then by combining Eqns. (75) and (70) 

 
2

/212 12

1 2 /2 2

12 1211 22 11 22

cov ,
1 1

yy y x

G Z

S sr r
b b s

r rS S S S

 
 

 
                  (76) 

To obtain the variance of the constant b0, from Eqn. (41) 

 
0 1 2

2 2 2 2 2 2

/ 1 2 1 2 1 2
2 cov ,

b y x b b
s s x s x s x x b b                       (77) 

Substituting estimates for 
2

/y xs  

2

/2

/

y x

y x

s
s

w



                       (78) 

and taking into account that 
2 2

/ /y x G Z yys s S , we obtain 
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0

2 2

2 2 1 2 12

/ 1 22

12 11 22 11 22

2 2 2

/ 1 2 122

12

1 2

1 1
2

1

1 1

1
2

b G Z yy

G Z yy

x x S
s s S x x

w r S S S S

s S z z r
w r

z z

    


 


  
  

  

 
   

 





                 (79) 

In most regression applications, a t value (t=bi/sbi) is calculated fro each independent variable, being 

often used, e.g., for testing significance. However, a joint confidence region (confidence ellipse) for 

1 and 2 may be bounded. Please see Box et al. [24] for details. Residuals should be plotted in 

various ways in order to detect possible anomalies. The topic has also been treated  [3, 22, 31] 

previously with detail by some authors. 

13. CALCULATION OF THE VARIANCE OF ANY FITTED VALUE IN THE SCALED AND ORIGINAL 

MODELS   

To obtain the variance of any fitted ĝ value, since ĝ  is a linear combination of the random variables 

a1 and a2 1 2 2

ˆ( )G a Z a Z   it follows that 

 
1 2

2 2 2 2 2

1 2 1 2 1 2
2 cov ,

g a a
s Z s Z s Z Z a a                       (80) 

and taking into account Eqns. (69) and (70) 

2 2 2 2

1 2 1 2 12 /2

12

1
2

1
g G Z

s Z Z Z Z r s
r

  


                       (81) 

To obtain the variance of any fitted ŷ value, 
2

ys , we look at the Eqn. (11) in a slightly different form, 

namely 

ˆˆ
yy

y y G S                         (82) 

2

/2 2

ˆ

y x

y yy G

s
s S s

w
 


                      (83) 

so that y and Ĝ are uncorrelated. 

Thus the variance of the predicted mean value of y , 0ŷ at a specified value of x1 and x2 

0

2 2 2 2

/ 1 2 1 2 122

12

1 1
2

1
y G Z yy

s s S Z Z Z Z r
rw

   


 
   

 
                  (84) 

This equation is identical to Eqn. (79). We may find the variance of b0 as a particular case of variance 

of any mean estimated value of ˆ
iy , in which xi=0 and /

i i ii
Z x S . 

If we are not concerned with the mean value Ei(Y) which can be obtained for given values x1i and x2i 

but with the average deviation of a single measurement yi from the mean E(Y) , then the variance of 

the difference 

 i i i
y E y                         (85) 

to be determined, is expressed as 

2 2 2

ˆi i iy ys s s                          (86) 
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and then the variance of predicting a single new value of response at given x1 and x2 is equal to plus 

the variance of estimating the mean response at that point, that is 

2 2 2 2 2

ˆ 1 2 1 2 12 /2

12

1 1
1 2

1
y y x

s s Z Z Z Z r s
rw


    



 
   

 
                  (87) 

14. THE MULTIPLE COEFFICIENT OF DETERMINATION AND THE COEFFICIENT OF MULTIPLE 

CORRELATION  

The adequacy of the regression model in terms of fit is usually assessed by the magnitude of a 

summary statistics knows as the multiple coefficient of determination or R
2
 value, which is defined as 

[22, 49-52] 

 

 

2

2

2

ˆ
i i

i i

w y y
R

w y y









                      (88) 

The total sum of squares may be divided in two parts: a) the sum of squares due to the fitted equation; 

and b) the residual sum of squares. In terms of the original model 

     ˆ ˆ
i i i i i i i

w y y w y y w y y                        (89) 

Squaring and summation over i gives 

     
2 2 2

ˆ ˆ
i i i i i i i

w y y w y y w y y                         (90) 

the cross product vanish on the summation   ˆ ˆ2 0
i i i i

w y y y y    

Thus 

 

 

2

2

2

ˆ
1

i i

i i

w y y
R

w y y


 






                     (91) 

It is a measure of the strength of correlation. The range of R
2
 values is 0  R

2
 1. The R

2
 value will be 

close to one if the fitted regression model represents a good fit of the data. Similarly, a poor fit of the 

fitted regression model will result in a R
2
 value near zero. 

From Eqn. (12) and (75)-(76) 

i i yy
y y G S                          

(92) 

ˆˆ
i i yy

y y G S                        (93) 

 

 

2 2

2

2 2

ˆˆ
i i i

ii i

w y y w G
R

w Gw y y


 



 


                    (94) 

but
2

1
i

wG  (Eqn. 14) 

     
22 2 2 2

1 1 2 2 1 1 2 12 2 1 1 2 12 2 1 12 2
ˆ 2

i í i
R wG w a Z a Z a a a r a a a a r a a r a                         (95) 

and taking into account the normal equations (33) and (34) 

2 2

1 1 2 2
ˆ

i i y y
R wG a r a r                        (96) 

The R
2
 is invariant under non-singular transformation [53] of the original variables. This property 

implies that the same correlation will be obtained from the matrix of correlation as from the 
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covariance matrix. The R
2
 measure “the proportion of total variation about the mean of yi values 

explained by the regression”. R
2 

may adopt value as high as 1 (or 100 %) when all the (xi) values are 

different. When data are replicated (different results being obtained), however, the value of R
2
 cannot 

achieve 1 with independence of how well the model fits. As a matter of fact no model, however good, 

may account for the variation in the data [22-23] due to pure error. The square root of the coefficient 

of multiple determination is the coefficient of multiple correlation, R. From a strictly point of view, 

correlation is defined only for random variables and as the xi’s values are predetermined, this name is 

not totally correct. 

The sample value of R
2 

is a biased estimate of the corresponding population coefficient. With samples 

of small size, the value of R must be corrected for the systematic error. The fewer the degrees of 

freedom,  = n-1, the more the degree of correlation given by the multiple correlation coefficient is 

overestimated. Unbiased estimates of R
2
 is available namely, the correlated multiple coefficient of 

determination which is defined as a ratio of variances 

 

 

 

 

2

2

2

2 2

ˆ

ˆ111 1 1
1

1

i i

i i

i i i i

w y y

w y yresidual variance nn lR
y variance n lw y y w y y

n



      
  






 
               (97) 

 2 2 1
1 1

1

n
R R

n l


  

 
                     (98) 

l is the number of coefficients in the regression equation. Note that the coefficient of determination 

does not indicate if the lack of (perfect prediction) fit is due to a wrong (inadequate) model used or to 

the purely experimental uncertainty.  

15. ADEQUACY OF THE MODEL  

Using an F test sometimes checks the adequacy of the model 

 

 

/ 1

/

sumof squares dueto regression l
F

sumof residuals squares n l





                               (99) 

and taking into account Eqn. (91), the F value as a function of R
2
 will be given by 

 

   

2

2

/ 1

1 /

R l
F

R n l




 
                     (100) 

Greater the value of R
2
, greater the calculated value of F: when R

2
=1, F=; and when R

2
=0 then F=0. 

16. THE THREE PARAMETER MODEL 

For a model of the kind 

0 1 1 2 2 3 3x x x                           (101) 

we get 

 

2

23 13 23 12 12 23 13

2

13 23 12 13 12 13 23

211 12 13
1 12 23 13 12 13 23 121

21 22 23 2 2 2

12 23 13 12 13 23

31 32 33

1

1

1
'

1 2

r r r r r r r

r r r r r r r
D D D

r r r r r r r
D Z W Z D D D

r r r r r r
D D D




   
 

   
                
 

                                                   (102) 

and then 
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1 1 11 2 12 3 13

2 1 12 2 22 3 23

3 1 13 2 23 3 33

y y y

y y y

y y y

a r D r D r D

a r D r D r D

a r D r D r D

  

  

  

                        (103a,b,c) 

Eqns. (40) and (41) being now valid with i=1,2,3. 

17. HIGHER ORDER MODELS: SOLVING SIMULTANEOUS OVER DETERMINED (LEAST SQUARES) 

EQUATIONS SYSTEM 

The matrix approach to the solution of a set of simultaneous linear equations is entirely general. By 

expressing the regression problem in matrix notation a solution is obtained that is applicable to any 

linear regression situation, including the simple straight line. For an over determined set of equations 
ZA=G, the normal equations are given by Eqns. (26) or (27), (Z’W

-1
Z)A=Z’W

-1
G. By introducing [36] 

the matrix 

1

2
w

Z W Z


                      (104) 

and the corresponding vector 

1

2
w

G W G


                      (105) 

Eqn. (26) or (27) reduces to 

w w w wZ Z A Z G                      (106) 

leading to 

 
1

w w w wA Z Z Z G


                      (107) 

The normal equations -Eqn. (106)- can be solved by means [36, 54-57] of three basic methods. The 
first bases the calculation on the Zw’Zw matrix: Gaussian elimination (and related methods, e.g. Gauss-

Jordan), the sweep operator or the Cholesky decomposition. The second method avoiding forming the 

Zw’Zw matrix works directly with Zw by using QR decomposition (modified Gram-Schmidt, 
Househölder reflection or Givens rotation algorithms). The third method involves [39, 58-62] singular 

value decomposition (SVD). 

Note that the inverse of a matrix developed in terms of its determinant offers an exact connection 

between elements of a matrix and those of its inverse (when it is exists, i.e. when it is non singular). 
The process of matrix inversion, however, is a relatively complicated one, as we have previously 

indicate in section 5, because using determinants is computationally tedious even for matrices of small 

order such as 4x4 or 5x5. Direct solution of the normal equations is not generally the best way to find 
the least squares solution. Product matrices of the form Z’Z, however, have unpleasant roundoff 

properties. Fortunately, more efficient methods used in computer program exist to produce readily the 

pseudo inverse, without inverting matrices.  

The SVD is intimately related to the familiar theory of diagonalizing a symmetric matrix. The 

operation performed in SVD is sometimes referred to as eigenanalysis, principal component analysis, 

or factor analysis. It is also used for modern computations of principal partial least squares regression 

(PLSR). The major benefit from using SVD is that it can handle ill-conditioned matrices much better 
than the approach expressed in Eqn. (107). This is the most computationally extensive approach, but 

also it is the most numerically stable 

18. POLYNOMIALS MODELS 

MLR can also be used to solve polynomial regression problems 

2

0 1 2 ... m

mx x x                           (108) 

By setting x=x1, x
2
=x2,…,x

m
=xm, a MLR model of order m+1 is obtained, which can be estimated as 

previously described. 
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19. APPLICATIONS 

MLR was first applied [63-69] in the field of medicinal and pharmaceutical chemistry in order to 
study QSAR, and in correlation analysis of organic reactivity, i.e. prediction of n-octanol water from 

structures, some interesting monographs being published on this respect [65-69], and an in the search 

of solute-solvent interactions of various kinds [63]. A survey of selected (mainly) analytical and 
physico-chemical applications [70-163] of MLR is given in Table 1. Papers are summarized in Table 

1 in chronological order from 2017 downwards, as in other previous papers and contributions [2, 3, 6-

7] from our laboratory. Emphasis is put on the most recent applications, 54 of the 96 applications 

selected date from 2000 onwards. The number of applications, however, seems to be unlimited. 

We may indicate at first various kinds of functional relationships based on structure and response 

depending on the topic subject of research, e.g. property, retention, transformation, free linear energy, 

or activity: 

i) Quantitative structure property relationships (QSPR), e.g. those dealing with solution kinetics 

[73], melting points [79], physico-chemical properties [84] and drug n-octanol water partition 

[103]. 

ii) Quantitative structure retention relationships (QSRR), e.g. those related with steroid [97], 
essential oil compounds [101], local anaesthetics [127], and apparent volume of distribution 

[108]. 

iii) Quantitative structure-transformation relationships (QSTR), e.g. papers [115, 118] on 
sulfonylurea derivatives. 

iv) Molecular linear free energy relationships (MLFER), e.g. studies on prediction partition 

coefficients [122], solute-solvent interactions [125], specific descriptors [126], and empirical 
parameters of solvent potency [156]. 

v) Quantitative structure activity relationships (QSAR), e.g. those that cyclooxygenase inhibitor 

[112], effect of OATP1B1 transport [80], chromatographic studies [150], steric considerations 

[154], chance factors involved [157], carminative activity [154, 158], parameters in connection 
with correlation analysis [161], drug design [162], and mathematical aspects of the topic [163]. 

Another group of papers dealt with solvent polarity parameter and solvatochromic effects and 

solvatochromic parameters and solvent polarity scale [86, 92, 102, 110, 114, 135, 137, 144, 151]. 
Papers on parameter estimation methods have also been selected, e.g. redox potential of cytochrome C 

[105], apparent dissociation constants [116], overlapping acidity constants [134, 149], physico-

chemical parameters [113, 119, 141], neutralization enthalpies [148], position and confidence limits 
of an extreme [155, 160], counting measurements [159], linear and non linear calibration response 

[133], and multiparameter models [153]. The field of prediction is also an important area, e.g. 

chromatographic retention indices [96, 99, 100, 120, 135], acute toxicity of phenol derivatives [74], 

some physico-chemical properties [84], apparent volume of distribution [108], partition coefficients 
[122], acidity constant values [123] fuel ignition quality by NMR [76], models for ginsenosides [100], 

and performance of MLR  [139]. Solution kinetics [73, 142], modelling and optimization on ionisable 

compounds [111] and acid-base behaviour of solvent effects [117], analysis of IR and NIR-FT spectra 
[77, 85, 90], UV absorption spectra [81], correction of spectral interferences (matrix effect) [87, 93, 

129] on molecular absorption and atomic emission techniques, and multicomponent 

spectrophotometric analysis of mixtures [94, 95, 107, 146] have also been the subject of study. 

Table 1. Some selected applications of Multiple Linear Regression 

[Ref.] Chemical Problem Authors 

[70] Setting water quality criteria for copper using MLR models: A 

complementary approach to the biotic ligand model  

Brix et al., 2017 

[71] Soil organic carbon distribution in Mediterranean areas under a climate 

change scenario via MLR analysis  

Olaya-Abril et al., 

2017 

[72] A MLR model for the estimation of blue ballpoint pen ink dating by 

measuring the fading of ink with respect to time using UV–Vis 

spectrophotometry 

Sharma and Kumar, 

2017 

[73] Use of Monte Carlo method in addition to functional and individual 

weighting to overcome multicollinearity problems in MLR equations 

Elvas-Leitao, 2016 
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applied as QSPR. The method was applied to rate constants for the 

Menschutkin reaction between Et3N and EtI in mono- and di-alcohols 

[74] Prediction of acute toxicity of phenol derivatives using MLR approach for 

tetrahymena pyriformis contaminant identification in a median-size 

database  

Dieguez-Santana et 

al., 2016 

[75] A note on the use of MLR in molecular ecology to assess the relative effects 

of genetic characteristics on individual fitness or traits, or how 

environmental characteristics influence patterns of genetic differentiation 

Frasier, 2016 

[76] An improved model for the prediction of ignition quality of hydrocarbon 

fuels using 1H nuclear magnetic resonance spectroscopy and MLR 

modelling. Cetane number and derived cetane number of 71 pure 

hydrocarbons and 54 hydrocarbon blends were utilized as a data set  

Jameel et al., 2016 

[77] A new method named “consensus successive projections algorithm – MLR 

method” is proposed in order to make a full use of the useful information in 

the spectra 

Chen et al., 2015 

[78] A method for the quantification of the sum of short chain chlorinated 

paraffins by gas chromatography-mass spectrometry. The method is suited 
to the special demands of environmental sediment analysis using an 

approach of sum determination by MLR  

Gei et al., 2015 

[79] QSPR study on melting point of carbocyclic nitroaromatic compounds by 

MLR and artificial neural network  

Wang et al, 2015 

[80] QSAR analysis of the effects of OATP1B1 transporter by structurally 

diverse natural products using a particle swarm optimization-combined 

MLR approach  

Cao et al., 2014 

[81] Determination of thiophanate-methyl using UV absorption spectra based on 

MLR  

Jiao et al., 2014 

[82] A method for estimating multivariate functional relationships between sets 

of measured oceanographic, meteorological, and other field data using MLR 

approach 

Richter and Stavn, 

2014 

[83] A data set of 1-adamantylthiopyridine analogues (1-19) with antioxidant 

activity was used for constructing QSAR models. MLR was employed for 

the development of QSAR models  

Worachartcheevan et 

al, 2014 

[84] Develop of QSPR to predict characteristic properties of a series of 62 new 

glycerol derivatives, relevant to solvent classification and substitution uses 
using structural descriptor variables by MLR analysis 

García et al., 2013 

[85] A high-throughput screening technology based on near-infrared 

spectroscopy for the rapid and accurate determination of algal biomass 

composition using MLR and multivariate linear regression analysis  

Laurens and 

Wolfrum, 2013 

[86] The feasibility of colorimetric measurements coupled with multivariate data 

analysis to determine the empirical solvent polarity parameter ET(30) 

Shakerizadeh-Shirazi 

et al., 2013 

[87] Internal correction of spectral interferences and mass bias for selenium 

metabolism studies using enriched stable isotopes in combination with 

MLR  

Lunne et al., 2012 

[88] Mathematical procedure of MLR in combination with on-line liquid 

chromatography applied for the measurement of Sr and Nd isotope ratios by 

multicollector ICP-MS in the presence of isobaric isotopes. The separation 

of Rb and Sr and the separation of Nd and Sm were accomplished by ion 

exchange chromatography with large volume injection 

Rodriguez-Castrillón 

et al., 2012 

[89] Effects of E-beam irradiation on several food compositional parameters 

such as protein, fat, moisture, nitrate and nitrite content, as well as free 
amino acids and some of their decomposition products. To evaluate food 

modifications, principal component analysis and MLR statistical tools were 

used 

Guillén-Casla et al., 

2011 

[90] Fourier-transform infrared spectroscopy, followed by multivariate treatment 

of spectral data, is proposed to evaluate the oxidised fatty acid (OFA) 

concentration in virgin olive oil samples characterised by different oxidative 

status 

Lerma-García et al., 

2011 

[91] A new procedure using a student-friendly least-squares MLR technique 

utilizing a function within Microsoft Excel is described that enables 

students to calculate molecular constants from the vibronic spectrum of 

iodine 

Cooper, 2010 
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[92] Statistical analysis is applied to study the solvatochromic effects using the 

solvent parameters (regressors) influencing the spectral shifts in the 

electronic spectra 

Dorohoi, 2010 

[93] Control of matrix interferences by MLR models in the determination of 

arsenic and lead concentrations in fly ashes by inductively coupled plasma 

optical emission spectrometry  

Ilander and Väisänen, 

2010 

[94] An exercise is described for the analysis of a mixture containing 

acetaminophen, aspirin, and caffeine using UV spectroscopy and HPLC. 

The concentrations of various components in a mixture are determined 

directly from the UV spectra using MLR, and then the concentrations of 

various components in a mixture are determined using HPLC data 

Smith et al., 2010 

[95] A novel approach for the estimation of the concentration of chemical 

components through spectrophotometric measurements. It is based on the 

exploitation of the whole spectral information available in the original 

spectral data space by means of a MLR system  

Benoudjit et al., 2009 

[96] QSRR for the prediction of Kováts retention indices of 180 alkylphenols 
and their derivatives using the MLR and support vector machine  

Fatemi et al., 2009 

[97] Gas chromatographic QSRR of trimethylsilylated anabolic androgenic 

steroids by MLR and partial least squares 

Fragkaki et al., 2009 

[98] A rapid and non-destructive method to evaluate the advanced oxidation of 

virgin olive oils (VOOs). An electronic nose based on an array of six metal 

oxide semiconductor sensors was used, jointly with MLR, to predict the 

oxidized fatty acid concentration in VOO samples characterized by different 

oxidative status 

Lema-García et al. 

2009 

[99] Uses of support vector machines, radial basis function neural networks and 

MLR methods to investigate the correlation between gas chromatography 

retention indexes and physicochemical descriptors for diverse organic 

compounds 

Chen et al., 2008 

[100] MLR and artificial neural network retention prediction models for 

ginsenosides on a polyamine-bonded stationary phase in hydrophilic 

interaction chromatography 

Quiming et al., 2008 

[101] QSRR for components of the essential oil of the plant Bidens pilosa Linn. 
var.  A suitable set of molecular descriptors was calculated and the best-

fitting descriptors were selected by using stepwise MLR and a genetic 

algorithm the selection of variables 

Riahi et al., 2008 

[102] Pyridinium-N-phenolate betaine dyes as empirical indicators of solvent 

polarity  

Reichardt, 2008 

[103] A QSPR study of n-octanol-water partition coefficients of some of diverse 

drugs using MLR 

Ghasemi and 

Saaidpour, 2007 

[104] The usefulness of robust MLR techniques implemented in the expectation 

maximization framework in order to model successfully data containing 

missing elements and outlying objects 

Stanimirova et al., 

2007 

[105] Spectroelectrochemical determination of the redox potential of cytochrome 

C via MLR: An undergraduate instrumental analysis or biochemistry 

laboratory exercise 

Whitaker et al., 2007 

[106] Some of the earlier proposed empirical equations used for retention 

modeling are tested in micellar liquid chromatography 

Boichenko et al., 

2006 

[107] Precision in multi-wavelength spectroscopic analysis with classical-least 

squares regression 

Cabezon and Oliveri, 

2006 

[108] Apparent volume of distribution for drug entities belonging to different 
chemical classes was studied using a quantitative structure pharmacokinetic 

relationship approach 

Ghafourian et al, 
2006 

[109] Micellar liquid chromatography for the determination of drug materials in 

pharmaceutical preparations and biological samples  

Esteve-Romero et al., 

2006 

[110] Empirically determination of the polarity of room-temperature ionic liquids 

by means of solvatochromic pyridinium N-phenolate betaine dyes  

Reichardt, 2005 

[111] Considerations of the modelling and optimization of resolution of ionizable 

compounds in extended pH-range columns 

Torres-Lapacio et al., 

2005 

[112] Selection of the most important descriptors (taken as independent variables) 

to build QSAR models with MLR method 

Lü et al., 2004 

[113] Determining the relative contribution of structural properties of aminoacids Madden et al., 2004 
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to the formation of beta sheets in proteins and predicting the properties of a 

molecule using parameters derived from IR spectroscopy by using graphing 

calculators 

[114] A study was made to correlate an overall solute polarity descriptor (p) with 

several molecular parameters: excess molar refraction, 

dipolarity/polarizability, effective hydrogen-bond acidity and basicity, and 

McGowan volume, through the linear solvation model  

Torres-Lapacio et al., 

2004 

[115] Model development to predict transformation of sulfonylureas in different 

matrices using MLR  

Berger, Muller and 

Eing, 2002 

[116] A mathematical model for calculating apparent acid dissociation constants 

(pKa) in hydroorganic mixtures with respect to the concentration of organic 

solvent in a binary mixture 

Jouyban et al., 2002 

[117] Expressions of Kamlet-Taft equations obtained by MLR applied to pKa 

values of adenine (pK1, pK2) and adenosine 3’, 5’-cyclic monophosphate 

(sodium salt) 

Marqués et al., 2002 

[118] Developments of QSAR models between the structure of phenylurea 

herbicides and their transformation in different matrices 

Berger et al., 2001 

[119] Comparison and description of high throughput methods to measure the 
properties: solubility, permeability, lipophilicity, pKa, stability and integrity 

fpr drugs discovery 

Kerns, 2001 

[120] Prediction of retention factors of phenolic and nitrogen-containing 

compounds in reverse-phase liquid chromatography based on logP and pKa 

obtained by computational chemical calculation 

Hani et al., 2000 

[121] Development of a method of ion-interaction chromatography for the 

simultaneous separation of 21 polar aromatic sulphonates using a Box-Cox 

transformation 

Marengo, Gennaro 

and Gianotti, 2000 

[122] A previously published method for the prediction of MLFER descriptors is 

tested against experimentally determined partition coefficients in various 

solvent systems. Modified solvation equations for water−octanol and 

water−cyclohexane partition are presented, and their implications discussed 

Platts et al., 2000 

[123] Application of the Hammett and Taft one-parameter model and Drago dual-

parameter model to a very wide series of dissociation constants in methanol 

of carboxylic aliphatic acids, benzoic acid derivatives, phenols, protonated 
amines, anilinium and pyridinium derivatives 

Bosch et al., 1999 

[124] Application of a general growth curve model with different covariance 

structures to assess the similarity of dissolution rates of several drug lots 

Lee et al., 1999 

[125] Solute-solvent interactions in normal-phase liquid chromatography: a 

MLFER study 

Oumada et al., 1999 

[126] Estimation of molecular free energy relation descriptors using a group 

contribution approach 

Platts et al., 1999 

[127] A novel retention model that includes the hydrophobicity of compounds and 

the molar fraction of the charged form of compounds by means of MLR 

Escuder-Gilabert et 

 al., 1998 

[128] The technique of MLR is applied instead of the Yates’ method on factorial 

and fractional designs in experimental science according to Response 

Surface methodology. Several examples taken from the literature are 

analysed 

González, 1997 

[129] An undergraduate laboratory experiment is designed for the simultaneous 

determination of both Co(II) and Cr(III) in unknown liquid mixtures based 

upon a bilinear least squares regression analysis of measured absorbance 

data 

Pandey et al., 1998 

[130] A computer program for searching the best model for describing different 
experimental systems 

Bohanec and Moder, 
1997 

[131] Correct and incorrect use of MLR. A set of criteria useful to judge the 

quality of an experimental plan, before carrying out any experiment 

Sergent et al., 1995 

[132] Study of the relationship between pH(s) and solvent composition, expressed 

as a fraction in order to assessing the presence of preferential solvation 

effects. The linear solvation energy relationships method has been applied 

Barbosa and Sanz-

Nebot, 1994 

[133] A calibration routine based upon the curve y = axlnx + bx + c is presented, 

which describes the non linear behaviour, including electron capture, 

nitrogen-phosphorus and UV photometric detectors. The method gives 

comparable results to weighted linear regression with assays showing linear 

Burrows and Watson, 

1994 
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concentration versus response relationship 

[134] Develop of a new methodology for calculation of acid-base dissociation 

constants of monoprotic and diprotic compounds from absorptiometric data 

and pH measurements by MLR 

Cladera et al., 1994 

[135] Correlation between the retention (log k′) values (using different columns 

and mobile phases) with the solute and mobile phase solvatochromic 

parameters for fifteen phenols 

Rosés and Bosch, 

1993 

[136] Relationship of partition coefficients of mono-substituted diazines and 

pyridines in different partioning systems 

Yamagami et al., 

 1993 

[137] Relationships between ET polarity and composition in binary solvent 

mixtures 

Bosh and Roses, 

1992 

[138] Use of MLR in order to reduce the number of absorbance measurements 

and provide a means for evaluating the precision of the results of the 

simultaneous determination of cobalt, copper, and nickel in solution by UV-

vis spectroscopy 

Dado and Rosenthal, 

1990 

[139] The predictive performance of three commonly used biased regression 

methods and MLR (ordinary least squares) using classical model selection 

techniques are evaluated on five data sets published in the chemical and 
statistical literature 

Kowalski, 1990 

[140] A method to evaluate the composition of a mixture of two different proteins 

from the amino acid composition by MLR with the aid of a computer 

program written in BASIC 

Antoni and 

 Presentini, 1989 

[141] Examination of the least squares method applied to the evaluation of 

physicochemical parameters with linearized equations 

Ramos and Alvarez-

Coque, 1989 

[142] Analysis of spectrally resolved kinetic data and time-resolved spectra by 

bilinear regression 

Roman and 

 Gonzalez, 1989 

[143] MLR approach by recasting the analysis of variance in order to compare the 

effects of several different treatments on a continuous variable of interest, 

applicable with missing data 

Slinker and Glantz, 

198 

[144] The Py scale of solvent polarities. The relative intensities I1/I3 of the 

vibronic bands of pyrene fluorescence in 94 solvents and the vapor phase 

are reported 

Dong and Winnik, 

1984 

[145] The octanol-water partition coefficient of aromatic solutes: the effect of 

electronic interactions, alkyl chains, hydrogen bonds, and ortho-substitution 

Leo, 1983 

[146] A commonly used undergraduate experiment in multicomponent analysis 

which has been modified to include the standard addition method, thereby 
eliminating the need for MLR 

Raymond et al., 1983 

[147] X-ray fluorescence determination of zinc, including the relative and 

absolute errors 

Adam and Suchonel, 

1982 

[148] The application of thermometric titrimetries to the determination of 

enthalpies of neutralization of diprotic and triprotic acids using a linear 

least-squares method 

Mongay et al., 1982 

[149] A critical study of the linear least-squares method applied to the 

spectrophotometric determination of protonation constants of diprotic acids 

Mongay et al., 1982 

[150] The rational bases, experimental techniques and conditions required for the 

chromatographic determination of the structural data of importance for 

studies on quantitative relationships between chemical structure and 

biological activity of drugs  

Kaliszan, 1981 

[151] An empirical relationship between the eluant strength parameter εº and 

solvent Lewis acidity and basicity 

Krygowski et al,  

1981 

[152] Quantitative trace gas analysis by infrared spectroscopy Haaland and 

 Esterling, 1980 

[153] Joint parametric uncertainty intervals for parameters of a MLR model Schwartz, 1980 

[154] The unexplained variation in the relationships between carminative 

activities and octanol-water distribution coefficients of various classes of 
compounds 

Evans et al., 1979 

[155] Determination of the absorption maximum in wide bands in the spectrum of 

dimethylphtalate 

Heilbronner, 1979 

[156] Possibilities of establishing reaction and absorption series using solvent-

dependent standard reactions or standard absorptions of organic 

compounds. Particular attention is merited by the summary of the 24 most 

Reichardt, 1979 



Multiple Linear Regression: An Overview with Analytical and Physico-Chemical Applications 

 

International Journal of Advanced Research in Chemical Science (IJARCS)                                   Page | 53 

important empirical parameters of solvent polarity and the table of ET(30) 

values for 151 solvents 

[157] Chance factors in studies of QSAR.  In this regard, a critical distinction 

must be made between the number of variables screened for possible 

correlation and the number which actually appear in the regression equation 

Topliss and Edwards, 

1979 

[158] The unexplained variation in the relationships between carminative 

activities and octanol-water distribution coefficients of various classes of 

compounds 

Evans et al., 1978 

[159] Methods are developed for calculating statistical uncertainties in the form of 

approximate confidence limits for analyses determined by calibration of 

counting experiments for which the calibration curve is linear 

Schwartz, 1978 

[160] A precise method of determining absorption maxima where Gaussian 

functions occur based on a logarithmic transformation of the Gaussian 

equation  

De la Zerda et al., 

1975 

[161] Chromatographic parameters in correlation analysis of QSAR Tomlinson, 1975 

[162] Utilization of operation schemes for analog synthesis in drug design Topliss, 1972 

[163] A mathematical technique is suggested as a means of describing QSAR of a 

series of chemical analogs  

Free and Wilson, 

1964 

20. FINAL COMMENTS 

An account to give sequentially a clear description of the MLR topic has been attended in this paper. 

This paper presents formulas useful in computing MLR, which led to an efficient method of 
computing. The entirely general matrix approach to least squares applicable to any regression 

situation has also been envisaged. The subject of MLR has enough importance as to devote a paper of 

this nature. Note that simple linear regression based on straight line has been reviewed and go on 
reviewing many times, but in spite of this, MLR usually receives minor attention. A number of 

selected references have been compiled in tabular form in order to advise the importance and wide 

range of application of the subject. References selected belong mainly to the fields of QSAR and 
related topics, solvent and solvatochromic effect and parameters, prediction in a variety of ways, 

parameter estimation methods and multicomponent analysis of mixtures from diverse analytical 

techniques. 
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