Submit Paper

Article Processing Fee

Pay Online

           

Crossref logo

  DOI Prefix   10.20431


 

ARC Journal of Cancer Science
Volume-4 Issue-1, 2018, Page No: 1-4
DOI: http://dx.doi.org/10.20431/2455-6009.0401001

Maternal Thyroid Cancer

Ahmed R.G*

Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.

Citation : Ahmed R.G. Maternal Thyroid Cancer. ARC Journal of Cancer Science 2018; 4(1):1-4.

Copyright : © 2018 Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Letter to Editor

The normal cooperation in the maternal hypothalamic-pituitary-thyroid axis (HPTA) during pregnancy is critical for the fetal and neonatal development(El-bakry et al., 2010; Ahmed, 2011, 2012a,b, 2013, 2014, 2015a-c, 2016a-d, 2017a-u & 2018a-d; Ahmed et al., 2010, 2013a,b, 2014, 2015a,b & 2018a,b; Ahmed and Incerpi, 2013;Van Herck et al., 2013; Ahmed and El-Gareib, 2014,Incerpi et al., 2014; Candelotti et al., 2015; De Vito et al., 2015; El-Ghareeb et al., 2016; Ahmed and El-Gareib, 2017; Moog et al., 2017). On the other hand, thyroid cancer is the utmost common type of endocrine neoplasia (90% of the endocrine malignancies) (Carling and Udelsman, 2014; Galdiero et al., 2016). There are links between the thyroid cancer and the chronic inflammation (Cunha et al., 2014; Galdiero et al., 2016). In addition, Lumachi et al. (2010) reported that the cytokines, pro inflammatory mediators, can control the response of systemic inflammatory, show a critical action in autoimmune thyroid diseases, and stimulate the development and growth of normal and neoplastic thyroid cells. Carling and Udelsman (2014) observed that the percentage of thyroid cancer can be divided into 5-10% is follicular thyroid carcinoma (FTC) and 80–85% is papillary thyroid carcinoma (PTC). The variations in the expression of mitogen-activated protein kinase (MAPK) and the PI3K-AKT pathway, including RET (encoding proto-oncogene tyrosine-protein kinase receptor ret), BRAF (encoding serine/threonine kinase B-raf), and RAS genes (which encode small GTPases) could cause the PTC (Cancer Genome Atlas Research, 2014; Hsiao et al., 2014). In addition, the alterations in the expression of PIK3CA, AKT1, and peroxisome proliferator-activated receptor gamma (PPAR-γ) could cause the FTC (Hsiao et al., 2014). On the other hand, thyroid cancer can affect tumor angiogenesis in particular the release of the vascular endothelial growth factor (VEGF; A and B), and chemokines (CXCL8 and IL-8), and lymph angiogenesis in particular the VEGF C and D factors (Curiel et al., 2004; Detoraki et al., 2009; Granata et al., 2010; Bruno et al., 2013; Mantovani et al., 2013; Visciano et al., 2015; Galdiero et al., 2016). Also, lymph angiogenesis and angiogenesis can increase the risk of the tumor growth and formation of metastasis (Detoraki et al., 2009; Bruno et al., 2013). More importantly, the micro environments such as the extracellular matrix components (ECM), blood and lymphatic vessels, immune cells, endothelial cell progenitors, and fibro blasts, play significant roles in the tumor initiation and progression (Ryder et al., 2008; Bissell and Hines, 2011;Coussens et al., 2013; Jung et al., 2015).

From the previous data and the current view, it can be inferred that the maternal thyroid cancer may delay the actions of all central biological systems during the prenatal and postnatal periods. Also, the treatment may be vital to inhibit the development of thyroid cancer. This can keep the stability in the HPTA during the perinatal period. All efforts should be accomplished to avoid the exposure to radiation and to find thyroid tumors carefully during pregnancy and lactation periods. Further studies are needed to discover the diagnostic and prognostic markers, and to design novel drugs for the common endocrine malignancy in particular the thyroid cancer. In addition, the molecular actions controlling the immune cytokine networks as well as lymph angiogenesis/ angiogenesis in several types of thyroid cancer should be examined. These problems need more analysis.


References


  1. Ahmed, O.M., Abd El-Tawab, S.M., Ahmed, R.G., 2010. Effects of experimentally induced maternal hypothyroidism and hyperthyroidism on the development of rat offspring: I- The development of the thyroid hormones-neuro transmitters and adenosinergic system interactions. Int. J. Dev. Neurosci. 28, 437-454.
  2. Ahmed, O.M., Abd El-Tawab, S.M., Ahmed, R.G., 2010. Effects of experimentally induced maternal hypothyroidism and hyperthyroidism on the development of rat off spring: I-The development of the thyroid hormones-neuro transmitters and adenosinergic system interactions. Int. J. Dev. Neurosci.28, 437-454.
  3. Ahmed, O.M., Ahmed, R.G., 2012. Hypothyroidism. In A New Look At Hypothyroidism. Dr. D. Springer (Ed.), ISBN: 978-953–51-0020-1), In Tech Open Access Publisher, Chapter 1, pp. 1-20.
  4. Ahmed, O.M., Ahmed, R.G., El-Gareib, A.W., El-Bakry, A.M., Abd El-Tawaba, S.M., 2012. Effects of experimentally induced maternal hypothyroidism and hyper thyroidism on the development of rat offspring: II-The developmental pattern of neurons in relation to oxidative stress and antioxidant defense system. Int. J. Dev. Neurosci. 30, 517–537.
  5. Ahmed, O.M., El-Gareib, A.W., El-bakry, A.M., Abd El-Tawab, S.M., Ahmed, R.G., 2008. Thyroid hormones states and brain development interactions. Int. J. Dev. Neurosci. 26(2), 147-209. Review.
  6. Ahmed, R.G., 2011. Perinatal 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin exposure alters developmental neuro endocrine system. Food Chem. Toxicology, 49, 1276–1284.
  7. Ahmed, R.G., 2012a. Maternal-newborn thyroid dysfunction. In the Developmental Neuro endocrinology, pp. 1-369. Ed R.G. Ahmed. Germany: LAP LAMBERT Academic Publishing GmbH & Co KG.
  8. Ahmed, R.G., 2012b. Maternal-fetal thyroid interactions, Thyroid Hormone, Dr. N.K. Agrawal (Ed.), ISBN: 978-953-51-0678-4, In Tech Open Access Publisher, Chapter 5, pp. 125-156.
  9. Ahmed, R.G., 2013. Early weaning PCB 95 exposure alters the neonatal endocrine system: thyroid adipokine dysfunction. J. Endocrinol. 219 (3), 205-215.
  10. Ahmed, R.G., 2014. Editorial: Do PCBs modify the thyroid-adipokine axis during development? Annals Thyroid Res. 1(1), 11-12.
  11. Ahmed, R.G., 2015a. Chapter1: Hypothyroidism and brain development. In advances in hypo thyroidism treatment. Avid Science Borsigstr.9, 10115 Berlin, Berlin, Germany. Avid Science Publications level 6, Melange Towers, Wing a, Hitec City, Hyderabad, Telangana, India. pp. 1-40.
  12. Ahmed, R.G., 2015b. Hypothyroidism and brain developmental players. Thyroid Research J. 8(2), 1-12.
  13. Ahmed, R.G., 2015c. Editorials and Commentary: Maternofetal thyroid action and brain development.J. of Advances in Biology; 7(1), 1207-1213.
  14. Ahmed, R.G., 2016a. Gestational dexa methasone alters fetal neuro endocrine axis. Toxicology Letters, 258, 46–54.
  15. Ahmed, R.G., 2016b. Neonatal polychlorinated biphenyls-induced endocrine dysfunction. Ann. Thyroid. Res. 2 (1), 34-35.
  16. Ahmed, R.G., 2016c. Maternal iodine deficiency and brain disorders. Endocrinol. Metab. Syndr.5, 223. http://dx.doi.org /10.4172/ 2161-1017.1000223.
  17. Ahmed, R.G., 2016d. Maternal bisphenol A alters fetal endocrine system: Thyroid adipokine dysfunction. Food Chem. Toxicology, 95, 168-174.
  18. Ahmed, R.G., 2017a. Developmental thyroid diseases and GABAergic dysfunction. EC Neurology 8.1, 02-04.
  19. Ahmed, R.G., 2017b. Hyperthyroidism and developmental dysfunction. Arch Med. 9, 4.
  20. Ahmed, R.G., 2017c. Anti-thyroid drugs may be at higher risk for perinatal thyroid disease. EC Pharmacology and Toxicology 4.4, 140-142.
  21. Ahmed, R.G., 2017d. Perinatal hypothyroidism and cytoskeleton dysfunction. Endocrinol MetabSyndr6, 271.doi:10.4172/21611017.1000271
  22. Ahmed, R.G., 2017e.Developmental thyroid diseases and monoaminergic dysfunction. Advances in Applied Science Research 8(3), 01-10.
  23. Ahmed, R.G., 2017f.Hypothyroidism and brain development. J. Anim Res Nutr. 2(2), 13.
  24. Ahmed, R.G., 2017g. Antiepileptic drugs and developmental neuro endocrine dysfunction: Every why has A Where fore.Arch Med 9(6), 2.
  25. Ahmed, R.G., 2017h. Gestational prooxidant-antioxidant imbalance may be at higher risk for postpartum thyroid disease. Endocrinol Metab Syndr 6, 279.doi:10.4172/ 21611017 .1000279.
  26. Ahmed, R.G., 2017i. Synergistic actions of thyroid-adipokines axis during development. Endocrinol MetabSyndr 6, 280. doi: 10.4172/ 2161-1017.1000280.
  27. Ahmed, R.G., 2017j. Thyroid-insulin dysfunction during development. International Journal of Research Studies in Zoology 3(4), 73-75. DOI: http://dx.doi.org/10.20431/2454-941X.0304010.
  28. Ahmed, R.G., 2017k. Developmental thyroid diseases and cholinergic imbalance. International Journal of Research Studies in Zoology 3(4), 70-72.doi:http://dx.doi.org/10.20431/2454941X.0304009.
  29. Ahmed, R.G., 2017l. Thyroid diseases and developmental adenosinergic imbalance. Int J ClinEndocrinol 1(2), 053-055.
  30. Ahmed, R.G., 2017m. Maternal anticancer drugs and fetal neuroendocrine dysfunction in experimental animals. EndocrinolMetabSyndr 6, 281.doi:10.4172/2161-1017.1000281.
  31. Ahmed, R.G., 2017n. Letter: Gestational dexamethasone may be at higher risk for thyroid disease developing peripartum. Open Journal of Biomedical & Life Sciences (Ojbili) 3(2), 01-06.
  32. Ahmed, R.G., 2017o. Deiodinases and developmental hypothyroidism. EC Nutrition 11.5, 183-185.
  33. Ahmed, R.G., 2017p. Maternofetal thyroid hormones and risk of diabetes. Int. J. of Res. Studies in Medical and Health Sciences 2(10), 18-21.
  34. Ahmed, R.G., 2017r. Association between hypothyroidism and renal dysfunctions. International Journal of Research Studies in Medical and Health Sciences 2(11), 1-4.
  35. Ahmed, R.G., 2017s.Maternal hypothyroidism and lung dysfunction. International Journal of Research Studies in Medical and Health Sciences 2(11), 8-11.
  36. Ahmed, R.G., 2017t.Endocrine disruptors; possible mechanisms for inducing developmental disorders. International journal of basic science in medicine (IJBSM) 2(4), 157-160.
  37. Ahmed, R.G., 2017u. Maternal thyroid hormones trajectories and neonatal behavioral disorders. ARC Journal of Diabetes and Endocrinology 3(2), 18-21.
  38. Ahmed, R.G., 2018a. Maternal hypothyroidism and neonatal testicular dysfunction. International Journal of Research Studies in Medical and Health Sciences 3(1), 8-12.
  39. Ahmed, R.G., 2018b. Maternal thyroid disorders and bone mal development: Are you ready to take risks for your offspring? J Pharma PharmaSci (JPPS) in press. DOI: 10.29011/ 2574-7711. 100058.
  40. Ahmed, R.G., 2018c. Non-genomic actions of thyroid hormones during development. App ClinPharmacolToxicol.ACPT108.doi:10.29011/ ACPT-108. 100008.
  41. Ahmed, R.G., 2018d. Interactions between thyroid and growth factors during development. ARC Journal of Diabetes and Endocrinology 4(1), 1-4.
  42. Ahmed, R.G., Abdel-Latif, M., Ahmed F., 2015a. Protective effects of GM-CSF in experimental neonatal hypothyroidism. International Immuno pharmacology 29, 538–543.
  43. Ahmed, R.G., Abdel-Latif, M., Mahdi, E., El-Nesr, K., 2015b. Immune stimulation improves endocrine and neural fetal outcomes in a model of maternofetal thyrotoxicosis. Int. Immuno pharmacol. 29, 714-721.
  44. Ahmed, R.G., Davis, P.J., Davis, F.B., De Vito, P., Farias, R.N., Luly, P., Pedersen, J.Z., Incerpi, S., 2013a. Non genomic actions of thyroid hormones: from basic research to clinical applications. An update. Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry, 13(1), 46-59.
  45. Ahmed, R.G., El-Gareib, A.W. 2014.Lactating PTU exposure: I- Alters thyroid-neural axis in neonatal cerebellum. Eur. J. of Biol. and Medical Sci. Res. 2(1), 1-16.
  46. Ahmed, R.G., El-Gareib, A.W., 2017.Maternal carbamazepine alters fetal neuro endocrine-cytokines axis. Toxicology 382, 59–66.
  47. Ahmed, R.G., El-Gareib, A.W., Incerpi, S., 2014. Lactating PTU exposure: II-Alters thyroid-axis and prooxidant-antioxidant balance in neonatal cerebellum. Int. Res. J. of Natural Sciences 2(1), 1-20.
  48. Ahmed, R.G., El-Gareib, A.W., Shaker, H.M., 2018a. Gestational 3, 3′, 4, 4′, 5-pentachloro biphenyl (PCB 126) exposure disrupts fetoplacental unit: Fetal thyroid-cytokines dysfunction. Life Sciences 192, 213–220.
  49. Ahmed, R.G., Incerpi, S., 2013. Gestational doxorubicin alters fetal thyroid–brain axis. Int. J. Devl. Neuroscience 31, 96–104.
  50. Ahmed, R.G., Incerpi, S., Ahmed, F., Gaber, A., 2013b. The developmental and physiological interactions between free radicals and antioxidant: Effect of environmental pollutants. J. of Natural Sci. Res. 3(13), 74-110.
  51. Ahmed, R.G., Walaa G.H., Asmaa F.S., 2018b.Suppressive effects of neonatal bisphenol A on the neuro endocrine system. Toxicology and Industrial Health Journal (in press).
  52. Bissell, M.J., Hines, W.C., 2011. Why don’t we get more cancer? A proposed role of the micro environment in restraining cancer progression. Nat Med 17, 320-9.
  53. Bruno, A., Focaccetti, C., Pagani, A., Imperatori, A.S., Spagnoletti, M., Rotolo, N., Cantelmo, A.R., Franzi, F., Capella, C., Ferlazzo, G., 2013.The proangiogenic phenotype of natural killer cells in patients with non-small cell lung cancer. Neoplasia 15, 133-42.
  54. Cancer Genome Atlas Research, N., 2014. Integrated genomic characterization of papillary thyroid carcinoma. Cell 159, 676-690.
  55. Candelotti, E., De Vito, P., Ahmed, R.G., Luly, P., Davis, P.J., Pedersen, J.Z., Lin, H-Y., Incerpi, I., 2015. Thyroid hormones crosstalk with growth factors: Old facts and new hypotheses. Immun., Endoc. & Metab. Agents in Med. Chem., 15, 71-85.
  56. Carling, T., Udelsman, R., 2014.Thyroid cancer. Ann Rev Med 65, 125-37.
  57. Coussens, L.M., Zitvogel, L., Palucka, A.K., 2013. Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science (New York, NY) 339, 286-91.
  58. Cunha, L.L., Marcello, M.A., Ward, L.S., 2014. The role of the inflammatory microenvironment in thyroid carcinogenesis. Endocrine-related cancer 21, R85-R103.
  59. Curiel, T.J., Cheng, P., Mottram, P., Alvarez, X., Moons, L., Evdemon-Hogan, M., Wei, S., Zou, L., Kryczek, I., Hoyle, G., 2004. Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res 64, 5535-8.
  60. De Vito, P., Candelotti, E., Ahmed, R.G., Luly, P., Davis, P.J., Incerpi, S., Pedersen, J.Z., 2015.Role of thyroid hormones in insulin resistance and diabetes. Immun., Endoc. & Metab. Agents in Med. Chem., 15, 86-93.
  61. Detoraki, A., Staiano, R.I., Granata, F., Giannattasio, G., Prevete, N., de Paulis, A., Ribatti, D., Genovese, A., Triggiani, M., Marone, G., 2009. Vascular endothelial growth factors synthesized by human lung mast cells exert angiogenic effects. J Allergy ClinImmunol 123, 1142-9.
  62. El-bakry, A.M., El-Ghareeb, A.W., Ahmed, R.G., 2010.Comparative study of the effects of experimentally-induced hypothyroidism and hyperthyroidism in some brain regions in albino rats. Int. J. Dev. Neurosci. 28, 371-389.
  63. El-Ghareeb, A.A., El-Bakry, A.M., Ahmed, R.G., Gaber, A., 2016.Effects of zinc supplementation in neonatal hypothyroidism and cerebellar distortion induced by maternal carbimazole. Asian Journal of Applied Sciences 4(04), 1030-1040.
  64. Galdiero, M.R., Varricchi, G., Marone, G., 2016. The immune network in thyroid cancer. Oncoimmunol. e1168556.
  65. Granata, F., Frattini, A., Loffredo, S., Staiano, R.I., Petraroli, A., Ribatti, D., Oslund, R., Gelb, M.H., Lambeau, G., Marone, G., 2010. Production of vascular endothelial growth factors from human lung macrophages induced by group IIA and group X secreted phospholipases A2. J Immunol 184, 5232-41.
  66. Hsiao, S.J., Nikiforov, Y.E., 2014. Molecular approaches to thyroid cancer diagnosis. Endocrine-related cancer 21, T301-313.
  67. Incerpi, S., Hsieh, M-T., Lin, H-Y., Cheng, G-Y., De Vito, P., Fiore, A.M., Ahmed, R.G., Salvia, R., Candelotti, E., Leone, S., Luly, P., Pedersen, J.Z., Davis, F.B., Davis, P.J., 2014. Thyroid hormone inhibition in L6 myoblasts of IGF-I-mediated glucose uptake and proliferation: new roles for integrin αvβ3. Am. J. Physiol. Cell Physiol. 307, C150–C161.
  68. Jung, K.Y., Cho, S.W., Kim, Y.A., Kim, D., Oh, B.C., Park do, J., Park, Y.J., 2015. Cancers with Higher Density of Tumor-Associated Macrophages Were Associated with Poor Survival Rates. J Pathol Transl Med 49, 318-24.
  69. Lumachi, F., Basso, S.M.M., Orlando, R., 2010.Cytokines, thyroid diseases and thyroid cancer. Cytokine 50, 229–233.
  70. Mantovani, A., Biswas, S.K., Galdiero, M.R., Sica, A., Locati, M., 2013. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 229, 176-85.
  71. Ryder, M., Ghossein, R.A., Ricarte-Filho, J.C., Knauf, J.A., Fagin, J.A., 2008. Increased density of tumor-associated macrophages is associated with decreased survival in advanced thyroid cancer. Endocrine related cancer 15, 1069-74.
  72. Van Herck, S.L.J., Geysens, S., Bald, E., Chwatko, G., Delezie, E., Dianati, E., Ahmed, R.G., Darras, V.M., 2013.Maternal transfer of methimazole and effects on thyroid hormone availability in embryonic tissues. Endocrinol. 218, 105-115.
  73. Visciano, C., Liotti, F., Prevete, N., Cali, G., Franco, R., Collina, F., de Paulis, A., Marone, G., Santoro, M., Melillo, R.M., 2015. Mast cells induce epithelial-to-mesenchymal transition and stem cell features in human thyroid cancer cells through an IL-8-Akt-Slug pathway. Oncogene 34, 5175-86.