Solution to the Riemann Hypothesis

Paul T E Cusack, BScE
23 Park Ave., Saint John, NB E2J 1R2, Canada

*Corresponding Author: Paul T E Cusack, BScE, 23 Park Ave., Saint John, NB E2J 1R2, Canada

1. INTRODUCTION

We consider arguably the most difficult outstanding math problem. We make use of AT Math to make progress on this problem. We alsocalculate the value of the imaginary number. We use our knowledge of AT math and Astrtothehogy to help us along.
Identity of the Imaginary Number, j
$\mathrm{j}^{2}=-1$
$\mathrm{j}=\mathrm{V}^{2}=\sqrt{ }(-1)=-\sqrt{ }(1)= \pm 1=E$
$j^{2}=-1$
Golden Mean Parabola
$\mathrm{t}^{2}-\mathrm{t}-1= \pm 1=\mathrm{E}=\mathrm{j}$
$\mathrm{t}^{2}-\mathrm{t}-1+\mathrm{j}^{2}= \pm 1+\mathrm{j}^{2}$
$\pm 1 \pm j^{2}=-j^{2}$
$-1+-0.618=-1.618$
Therefore $\mathbf{j}^{\mathbf{2}}=-0.618$
$+1-1.618=-0.618$
Therefore, $\mathrm{j}^{2}=-1.618$
These are the Roots of the Golden Mean Parabola
Since we are dealing with a circle, sine and cosine must be <1. Therefore,
$\mathbf{j}^{2}=\sqrt{ }-1=-0.618$
QED
Note: Negative time is Imaginary too. The Physical Universe begins at $\mathrm{t}=0 ; \mathrm{E}=-1$ on the Golden Mean Parabola.
$\zeta=1 / 2+$ it
We already have shown that $\sqrt{ }(-1)=-0.618$, root of the Golden Mean Parabola.
Let $\mathrm{t}=1$
$\zeta=1 / 2+(-0.618)(1)$
$=-0.1183$
Mass of thePeriodic Table is maximum at 118 amu .
$\zeta=1 / 2-(-0.618)(1)$
$=1.118$
$=1 / \mathrm{c}^{2}$
$\mathrm{PE}=\mathrm{Mc}^{2}$
$\mathrm{M}=1 / \mathrm{c}^{2}$
International Journal of Scientific and Innovative Mathematical Research (IJSIMR)

Therefore $\mathrm{E}=1$
$\mathrm{E}=1 / \mathrm{t}$
$1=1 / 1$
True!

Figure1: Plot of $E=1 / t ; t^{\wedge} 2-t-1=0$ Critical point $1 / c^{\wedge} 2$
If we consider the Golden Mean Parabola, time is imaginary preceding $\mathrm{t}=0$
At $\mathrm{t}=-0.618, \mathrm{E}=0$ is a root.
$\mathrm{t}^{2}-\mathrm{t}-1=0=\mathrm{E}$

Roots

$\mathrm{t}=-0.618 ; 1.618$

Figure2: Golden Mean Parabola

And we already know that
$t^{2}-t-1=E$
$\mathrm{E}=1 / \mathrm{t}$
$\mathrm{t}=1 / \mathrm{E}$
$(1 / E)^{2}-(1 / E)-1=1 / t$
Let $\mathrm{t}=1$
$1 / t=1 / 1=1 \quad \mathrm{E}=1$
Multiply through by E^{2}
$1-E-E^{2}=E^{3}$
$-E^{2}-E+1=E^{3}$
$\mathrm{E}^{2}+\mathrm{E}-1=\mathrm{E}^{3}$
$\mathrm{E}^{2}+\mathrm{E}-1=1$
$\mathrm{E}^{2}-\mathrm{E}-2=0$
Let $\mathrm{t}=0$
$\mathrm{E}^{2}-\mathrm{E}-2=\mathrm{t}$
$\mathrm{t}=\mathrm{E}^{2}$-E-2
$\mathrm{t}=\mathrm{E}^{\wedge} 2-\mathrm{E}-2$
$=\mathrm{E}(\mathrm{E}-1)-2$
=Always even - even $=$ even
$=0^{2}+0-2$
$=-2$
$\mathrm{E}=-1 / 2$
$\zeta=1 / 2+$ it
$=1 / 2+(-0.618)(-2)$
$t=\sqrt{3}$
$\mathrm{t}=$ eigenvector
$\mathrm{E}=1 / \sqrt{3}=\cot 60^{\circ}$

$$
\begin{aligned}
s & =|E||t| \sin \text { theta } \\
& =(2)(1)(s q r t 3 / 2) \\
& =\text { sqrt } 3 \\
& =\text { eignevector time }
\end{aligned}
$$

50\%= 1

K.E. =time

Figure3: Time is the eigenvector
$\zeta=1 / 2+\mathrm{it}$
$=t_{\text {min }}+(\sqrt{ }-1) \mathrm{t}$
$=\mathrm{t}_{\text {min }}+\left(\mathrm{t}^{2}-\mathrm{t}-1\right) \mathrm{t}$
$=\mathrm{t}_{\min }+\mathrm{t}^{3}-\mathrm{t}^{2}-\mathrm{t}$
$=t^{3}-t^{2}=0$
$\mathrm{t}\left(\mathrm{t}^{2}-\mathrm{t}\right)=0$
$\mathrm{t}=0$
$\left(\mathrm{t}^{2}-\mathrm{t}\right)=0$
$\mathrm{t}(\mathrm{t}-1)=0$

Always Even $=0$
$\mathrm{t}=0$; $\mathrm{t}=1$
Now M=Ln t
$\mathrm{t}=1$
$\mathrm{M}=\operatorname{Ln} 1=0$
Mass is 0 at $\mathrm{t}=1$
A plot of the \ln function shows that $\mathrm{E}=0$ at $\mathrm{t}=1$.

Figure4: Ln function

2. CONCLUSION

We hope this helps us make progress on the Riemann Hypothesis.

REFERENCES

[1] Cusack., PTE Proof that the Square Root of minus one is equal to the Conjugate of the Golden Mean. (Submitted).
[2] Cusack., PTE Energy, Time, and Mass. Nessa Publishers 2017.
[3] Cusack., PTE., Astrotheology: Cusack' Universe J of Phys Math Jan 2016.

Citation: Paul T E Cusack, BScE, Solution to the Riemann Hypothesis, International Journal of Scientific and Innovative Mathematical Research (IJSIMR), vol. 9, no. 1, pp. 31-34, 2020. Available : DOI: https://doi.org/ 10.20431/2347-3142.0901004
Copyright: © 2020 Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

