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1. INTRODUCTION 

In Mathematics many of problems can be formulated to form the ordinary differential equation, 

specially Bernoulli differential equations of first order, here we study and solve the Bernoulli 

differential equations. A numerical method is used to solve numerical problems. The differential 

equation problem [1-10],  consists of at least one differential equation and at least one additional 

equation such that the system together have one and only one solution called the analytic or exact 

solution to distinguish it from the approximate numerical solutions that we shall consider in this paper 

of first order, Faith C. K [1] studied the problem of Riccati by using combination of newton’s 

interpolation and Lagrange method, Nasr Al Din Ide [2,3] studied this problem also by using of 

Newton's Interpolation and Lagrange Method for Solving Bernolli equation and he combined of 

Newton’s interpolation and Aitken's method as hybrid technique by using these two types of 

interpolation to solve first order differential equation. In present study we will study Bernoulli 

Differential Equations by combined of Newton’s interpolation and Aitken's method [4-10]. Finally we 

verified on a number of examples and numerical results obtained show the efficiency  of the method 

given by present study in comparison with the exact solution.  

Let the  Bernoulli differential equation which can be written in the following standard form: 

𝑦′ +  P(x)y = Q(x)𝑦𝑛                                                                                                                                           (1) 

where P and Q are functions of x, and n is a constant  

n ≠ 1 (the equation is thus nonlinear).  

Where y is a known function and the values in the initial conditions are also known numbers. 

2. PRESENT AITKEN INTERPOLATION METHOD  

2.1. Combined Newton’s Interpolation and Lagrange Method [1, 2] 

This study combine both Newton’s interpolation method and Lagrange method. it used newton’s 

interpolation method to find the second two terms then use the three values for y to form a quadratic 

equation using Lagrange interpolation method as follows; 

2.1.1.Newton’s interpolation method [1, 2, 9] 

0 1 0 2 0 1 0 1 2 1( ) ( ) ( )( ) ... ( )( )... ( )n n nf x a a x x a x x x x a x x x x a x x                                                                                                             (2) 

Where 
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2.1.2.Lagrang interpolation method [1, 8] 
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3. DESCRIPTION OF THE METHOD 

This method will combine both Newton’s interpolation method and Lagrange method .it used newton’s 

interpolation method to find the second two terms then use the three values for y to form a linear or 

quadratic equations using Lagrange interpolation method as follows; 

0 1 0 2 0 1 0 1 2 1( ) ( ) ( )( ) ... ( )( )... ( )n n nf x a a x x a x x x x a x x x x a x x                                                                                                         (5) 

Where 
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etc 

1 0 1 0( )y a a x x                                                                                                                                                                                  (7)   

2 0 1 0 2 0 1( ) ( )( )y a a x x a x x x x                                                                                                                                          (8)   

Forming quadratic interpolation of  Lagrange, we have: 
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Note: we can use Newton's Forward Interpolation Formula instead of Newton's divided Interpolation 

method in (2.1). 

3.1.Aitken interpolation method [3,8] 
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4. EXAMPLES 

In this section, we will check the effectiveness of the present technique (3). First numerical comparison 

for the following test examples taken in [3]. 

Example 1 

Solve     𝑦′ = 𝑦 + 𝑥. y
1

2, 𝑡ℎ𝑒 𝑒𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑖𝑠 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠 

𝑦 = (𝑐. e
𝑥
2 − 𝑥 − 2)2 

For c=1, 𝑡ℎ𝑒 𝑒𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑖𝑠 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠 𝑦 = (e
𝑥

2 − 𝑥 − 2)2, ℎ𝑒𝑛𝑐𝑒, 𝑦(0) = 1 

Now, by taking the step h=0.01 

First by using Newton's interpolation, we have 
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Now, forming linear and quadratic using Aitken Method 
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𝑃0,1(𝑥) = 1 

𝑃0,2(𝑥) = 0.0055𝑥 + 1 

𝑃0,1,2(𝑥) = 0.55𝑥2 − 0.0055𝑥 + 1 

Hence, we can take the approximation solution of linear and quadratic using Aitken Method, if we take 

quadratic using Aitken Method, Table 1 gives the approximation solutions of Runge-Kutta method and 

Combined Newton's Interpolation and Aitken method with the exact solution of example 1 with the 

errors for : 

x=0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 

Table1. Solution of     𝑦′ = 𝑦 + 𝑥. 𝑦
1

2,      𝑦(0) = 1 

x       Combined Newton's 

Interpolation and Aitken 
exact Values Absolut error 

   0 1 1 0 

   0.01  1 1.009999833 0.009999833 

0.02 1.000110000 1.019998665 0.019888665 

0.03 1.000330000 1.029995492 0.029665492 

0.04 1.000660000 1.039989307 0.039329307 

0.05 1.001100000 1.049979102 0.048879102 

0.06 1.001650000 1.059963867 0.058313867 

0.07 1.002310000 1.069942587 0.067632587 

0.08 1.003080000 1.089877829 0.076834247 

0.09 1.003960000 1.090000000 0.086040000 

   0.1 1.004950000 1.100000000 0.095050000 

Example 2 

Solve     𝑦′ = 2𝑥𝑦 + 2x3. y2, 𝑡ℎ𝑒 𝑒𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑖𝑠 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠 

𝑦 = 1/(𝑐. e−x2
+ 1 − x2) 

For c=0, 𝑡ℎ𝑒 𝑒𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑖𝑠 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠  𝑦 = 1/(1 − x2), ℎ𝑒𝑛𝑐𝑒, 𝑦(0) = 1 

Now, by taking the step h=0.01 

First by using Newton's interpolation, we have 
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Now, forming linear and quadratic using Aitken Method 

𝑃0,1(𝑥) = 1 

𝑃0,2(𝑥) = 0.0001𝑥 + 1 

𝑃0,1,2(𝑥) = 0.01𝑥2 − 0.0001𝑥 + 1 

Hence, we can take the approximation solution of linear and quadratic using Aitken Method, if we take 

quadratic using Aitken Method, Table 2 gives the approximation solution and the exact solution of 

example 1 with the error for : 

x=0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1. 

Table2. Solution of     𝑦′ = 2𝑥𝑦 + 2𝑥3. 𝑦2,      𝑦(0) = 1 

x       Combined Newton's 

Interpolation and Aitken 
exact Values Absolut error 

   0 1 1 0 

   0.01     1.000009000 1.000100010 0.000099110 

0.02 1.000002000 1.000400610 0.000381600 
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0.03 1.000006000 1.000900811 0.000394160 

0.04 1.000012000 1.001602564 0.001590564 

0.05 1.002495000 1.002506266 0.002566760 

0.06 1.000093000 1.003613007 0.003583007 

0.07 1.000042000 1.004924128 0.004882128 

0.08 1.000056000 1.006441224 0.006385224 

0.09 1.000072000 1.008166146 0.008094146 

   0.1 1.000090000 1.010101010 0.010011010 

Example 3 

Solve     𝑦′ = x3. y3 − 𝑥𝑦, 𝑡ℎ𝑒 𝑒𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑖𝑠 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠 

𝑦 = 1/(𝑐. ex2
+ 1 + x2) 

For c=0, 𝑡ℎ𝑒 𝑒𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑖𝑠 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠  𝑦 = 1/(1+x2), ℎ𝑒𝑛𝑐𝑒, 𝑦(0) = 1 

Now, by taking the step h=0.01 

First by using Newton's interpolation, we have 
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Now, forming linear and quadratic using Aitken Method 

𝑃0,1(𝑥) = 1 

𝑃0,2(𝑥) = −0.00005𝑥 + 1 

𝑃0,1,2(𝑥) = −0.005𝑥2 + 0.00005𝑥 + 1 

Hence, we can take the approximation solution of linear and quadratic using Aitken Method, if we take 

quadratic using Aitken Method, Table 3 gives the approximation solution and the exact solution of 

example 1 with the error for : 

x=0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1. 

Table3. Solution of     𝑦′ = 𝑥3. 𝑦3 − 𝑥𝑦,      𝑦(0) = 1 

x       Combined Newton's 

Interpolation and Aitken 
exact Values Absolut error 

   0 1 1 0 

   0.01 1 0.999900010 0.000099990 

0.02 0.999999000 0.999600160 0.000398840 

0.03 0.999997000 0.999100809 0.000896191 

0.04 0.999994000 0.998402556 0.001591444 

0.05 0.999990000 0.997506234 0.002483766 

0.06 0.999985000 0.996412914 0.003572086 

0.07 0.999979000 0.995123893 0.004855107 

0.08 0.999972000 0.993640700 0. 004855107 

0.09 0.999964000 0.991965083 0.007998917 

   0.1 0.999950500 0.990099010 0.009851490 

5. CONCLUSION 

In this paper, we have been applied the combined Newton’s interpolation and Aitken method to solve 

nonlinear Bernoulli differential equation of first order, we find a good result compared to the exact 

solution through a three examples showing that. 
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