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1. INTRODUCTION 

An equation in one or more unknowns which is to be solved in integers is known as Diophantine 

Equation, named after the Greek Mathematician Diophantus. The word Diophantine refers to the 

Hellenistic mathematician of the 3rd century, Diophantus of Alexandria, who made a study of such 

equations and was one of the first mathematicians to introduce symbolism into algebra. 

In general, Diophantine equation 

x2 + bxy + cy2 + dx + ey + f = 0                                                                                      (1) 

where a, b, c, d, e, f are integral coefficients. There has been interest in determining all integer 

solutions to Diophantine equations among mathematician [8], [10], [19]. When studying a given 

Diophantine equation is whether a solution exists and in the case they exists, how many solutions, 

there are and whether there is a general form for the solution [14], [12]. So Diophantine equation 

represents a conic in the Cartesian plane and solution to equation (1) in integer solutions. It means 

finding all lattice points situated on this conic. 

Let ∆= b2 − 4ac be the discriminant of the equation (1) [17]. 

When ∆< 0, the conic given by equation (1) is an ellipse and has only a finite number of solutions. 

When ∆= 0, then the conic given by equation (1) is a parabola. 

For this, if 2ae − bd = 0, then the equation (1) becomes 

(2ax + by + d)2 = d2 − 4af 

If 2ae − bd ≠ 0, then substitutions 

X = 2ax + by + d, Y = (4ae − 2bd)y + 4af − d2 

So, the equation (1) reduces to X2 + Y = 0. 

When ∆> 0, the conic given by equation (1) is an hyperbola. So, the equation (1) reduces to a general 

Pell-type equation  

 x2 − dy2 = N                                                                                                                                      (2) 
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with  x, y are integers, N is nonzero integer and 𝑑 > 0, not perfect square [4], [10] which is special 

case of equation (1) known as Generalized Pell's Equation which is named after an English 

Mathematician John Pell who searched for integer solutions to equation of this type in (1611 - 1685). 

A nature of the equation (2) is that if it has an integer solution (x, y) with xy ≠ 0, then it must have 

infinitely many integer solutions. Assume that (x, y) = (u0, v0) is an integer solution of equation (2). 

Then one may check that (x, y) = (u0, v0) also solves the equation (2)  and when n ∈ N 

un =
1

2
[(u0 + v0√d)(x0 + y0√d)

n−1
+ (u0 − v0√d)(x0 − y0√d)

n−1
] ∈ Z 

 vn =
1

2√d
[(u0 + v0√d)(x0 + y0√d)

n−1
− (u0 − v0√d)(x0 − y0√d)

n−1
] ∈ Z 

These solutions can be obtained from the Binomial theorem and establishing the recurrence relations. 

It is also known that even if equation (2) is solvable in integers x and y finding its fundamental 

solution may not be an easy matter. 

For N = 1, equation (2) reduces Pell's equation 

x2 − dy2 = 1                                                                                                                                         (3) 

is known as the classical Pell's equation [3], [15] and was first studied by Brahmagupta (598 - 670) 

and Bhaskara (1114 - 1185) [1]. Its complete theory was worked out by Lagrange (1736 - 1813), not 

Pell. Lagrange was first to prove that Pell's equation has infinitely many solutions if d is a positive, 

not perfect square [15]. It is often said that Euler (1707 - 1783) mistakenly attributed Brounckers 

(1620 - 1684) work on this equation to Pell. So equation (3) has infinitely many integer solutions 

(xn, yn) for n > 1. The first non trivial positive integer solution (x1, y1)  of equation (3) is called the 

fundamental solution. 

In fact (x1, y1)  is fundamental solution of equation (3). Then nth  positive solution (xn, yn) is defined 

by  

xn + yn√d = (x1 + y1√d)
n

 

for integer 𝑛 > 1 [15]. 

In 1768 Lagrange proved that equation (3) has non-trivial integer solutions for all not perfect square 

𝑑 > 1 and its all integer solutions can be generated by its fundamental solution (x, y) = (x1, y1). But 

the most efficient method for finding the fundamental solution is based on the simple finite continued 

fraction expansion of √d [2], [13]. 

Fundamental Solution 

The positive solution (x0, y0) to the Pell's equation x2 − dy2 = 1 is called Fundamental solution if  

x < 𝑢, 𝑦 < 𝑣 for every other positive solution (u, v). To find the positive solution of the Pell's 

equation x2 − dy2 = 1 using Continued fraction expansion of √d. Similarly fundamental solution 

(u, v) of a class of solutions K of equation ax2 + bxy + cy2 = N is one where v has least non-

negative value when (u, v) belongs to K. Let u′ = −
(au+bv)

a
 be the conjugate solution to u. If u′ is not 

integral or if (u′, v) is not equivalent to (u, v), this determines (u, v) . If u′ is integral and (u′, v) is 

equivalent to (u, v), where u ≠ u′. We choose u > u′. There are finitely many equivalence classes, 

each indexed by a fundamental solution.  

Let [a0, a1, … , ak, 2a0] be the simple continued fraction expansion of √d. 

Let 

p−1 = 1, p−2 = 0, q−1 = 0, q−2 = 1 

pk = akpk−1 + pk−2, qk = akqk−1 + qk−2 

where k = 0,1,2, … , n, which is recurrence relation [16]. If k is odd, then the fundamental solution is 

(x1, y1) = (pk, qk) where pk and qk is the kth convergent of √d and if k is even, then the 

fundamental solution is (x1, y1) = (p2k+1, q2k+1) [15]. 
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Theorem 

If d is a positive integer, not perfect square, then the equation u2 − dv2 = 1 han infinitely many 

solutions in positive integers and the general solution is (un, vn)n≥0 

un+1 = u1un + dv1vn, vn+1 = v1un + u1vn 

where (u1, v1) is fundamental solution. 

Assume that equation (2) is solvable and let (x, y) be one of its solutions. Then 

(un + vn√d)(x + y√d) = unx + uny√d + xvn√d + vnyd  

  = (unx + vnyd) + (uny + vnx)√d 

And 

(unx + vnyd)2 − d(uny + vnx)2 = un
2x2 + 2xydunvn + vn

2y2d2 − dun
2y2 − 2dxyunvn − dvn

2x2 

= (x2 − dy2)(un
2 − dvn

2) 

= N. 1 = N 

It follows that (xn, yn)n≥0, where 

xn = unx + vnyd,     yn = uny + vnx 

satisfies the general Pell's equation. Hence every initial solution of the equation (2) generates its own 

family of infinitely many solutions. We say that the solution (xn, yn)n≥0 is associated with the 

solution (un, vn)n≥0. The set of all solutions associated with each other forms a class of solutions to 

equation (2). 

2. MATERIALS AND METHODS 

We considered some aspects of quadratic Diophantine equations. In this paper, we consider the 

integer solutions of quadratic Diophantine equation and is to be determine the solvability for quadratic 

Diophantine equation ax2 + bxy + cy2 = N . The main result of the quadratic Diophantine equation 

was made on the basis of different published documents. 

3. RESULTS 

Quadratic Diophantine Equation 

In 1885, Serret [21] studied the quadratic Diophantine equation 

ax2 + bxy + cy2 = N, a > 0, 𝑔𝑐𝑑(a, b, c) = 1  b2 − 4ac > 0 is positive, not perfect square and 0 <

|N| <
√d

2
.  Serret showed that if N > 0, then any relatively prime solution (x, y) with y > 𝑜 is a 

convergent to ρ =
(−b+pd)

2a
  or  σ =

(−b−pd)

2a
. However he was unable to deal conclusively with the 

case N < 0. This was done by M. Pavone [18] in the special case when |N| < 𝜇 is the least of the 

absolute values of integers represented by  μ  for integers x and y not both zero. We remark that 

Lagrange [4] proved μ <
√d

2
  . We modify M. Pavone proof when −

√d

2
< 𝜇 < 0  to show that either  

x

y
  

is a convergent to ρ or σ or has the form 

pm − pm−1, qm − qm−1 or pr − pr−1, qr − qr−1 

where 

ρ = [a0, … , am, b1, … , bn
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]  and  

σ = [c0, … , cr, d1, … , dn
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] 

where am ≠ bn, cr ≠ dn,  
pk

qk
 and 

Pk

Qk
 denote convergence of ρ and σ respectively. 

Finally, we remark that there is a continued fraction algorithm [10] for solving equation   

ax2 + bxy + cy2 = N irrespective of the size of N. 
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Let us consider an infinite form f(x, y) = ax2 + bxy + cy2 = N is Hermite reduced [5] if the roots θ1 

and  θ2 of f(x, 1) = 0 satisfy θ1 > 1 and −1 < θ2 < 0. Equivalently 

θ1 = [b1, … , bn]  and θ2 = −[0, bn, … , b1], where bi are positive integers. Let us consider  

θ1 = [a0, a1, … ]  and θ2 = −[a1, a2, … ] be Hermite reduced and infinite sequences (Sk), (Tk) [18] be 

defined as    

S0 = T−1, S−1 = T0 = 0 

Sk+1 = akS−k + Sk−1, Tk+1 = akTk + Tk−1, k ≥ 0 

 S−k−1 = −a−kS−k + S−k+1, T−k−1 = −akT−k + T−k+1T−1, k ≥ 0 

For k ≥ 1, the convergents to θ1 are 

Sk

Tk
=

Ak−1

Bk−1
= [a0, … , ak−1] 

To determine the convergent to θ2 are 

S−k−1

T−k−1
= [0, a−1, … , ak] 

and use the following result [6] 

θ2 = {
[−1,1, a−1 + 1, a−2, … ] if a−1 > 1

[−1, a−2 + 1, a3,…]  if a−1 = 1
 

For k ≥ 0, the convergent to  θ2 are 

(A0, B0) = (−1,1) 

(Ak, Bk) = {
(−1)k+1(Sk, TK), k ≥ 1, if a−1 > 1

  (−1)k+1(S−k−2, T−K−2), k ≥ 0, if a−1 = 1
 

For k ≥ 1, S−k−1  is positive when  k  is odd and T−k−1  is negative when k is odd. 

Theorem [11] 

Suppose that 0 < 𝑁 <
√d

2
. Let (p, q) be a relatively prime solution of ax2 + bxy + cy2 = N, a > 0 

with q > 0. Then  
p

q
  is a convergent to ρ =

(−b+√d)

2a
 or σ =

(−b−√d)

2a
 

Proof 

We have 

a (
p

q
− ρ) (

p

q
− σ) =

N

q2
 

Assume that 
p

q
> 𝜎,  then 

p

q
− ρ =

N

a (
p
q − σ) q2

 

=
N

a (
p
q − ρ + ρ − σ) q2

 

√d

2a(ρ − σ)q2
 

   =
√d

2q2
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Hence 
p

q
  is a convergent 

pk

qk
, k ≥ 0, to ρ by Lagrange [7]. There is a similar argument if 

p

q
< 𝜎 

Theorem [11] 

Let f(x, y) = ax2 + bxy + cy2 = N, a > 0, b2 − 4ac > 0, not perfect square. Let p and q > 0 be 

relatively primes integers such that f(p, q) = μ. Let the roots of f(x, 1) = 0 be 

ρ = [a0, … , am, b1, … , bn
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] 

σ = [c0, … , cr, d1, … , dn
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]  

where am ≠ bn, cr ≠ dn. Let the convergents of ρ and σ be denoted by 
pk

qk
 and 

Pk

Qk
 respectively. 

1. If 0 < 𝜇 <
√d

2
  , then 

p

 q
  is a convergent to ρ  or σ. 

2. If −
√d

2
< 𝜇 < 0, then 

p

 q
  is a convergent to ρ or σ or has the form 

pm − pm−1, qm − qm−1  or    Pr − Pr−1, Qr − Qr−1 

Proof 

Assume that f(p, q) = ap2 + bpq + cq2 = μ,  where 0 < |μ| <
√d

2
 and  

gcd(p, q) = 1. By Pavone's argument and define g(x, y) by 

g(x, y) = f(pmx + pm−1y, qmx − qm−1y) 

Then g  is Hermite reduced with roots 

  θ1 = [b1, … , bn] 

 θ2 = [0, bn, … , b1]           

and with sequences (Sk), (Tk) for θ1 and θ2 

(
pm pm−1

qm qm−1
) (

Sk

Tk
) = ± (

Pm+k

Qm+k
)                                                                                       (4) 

Moreover, there exists i, 1 ≤ i ≤ 3 such that 

σ = [c0, … , cr, bn−i, … , b1, bn, bn−1, … , bn−i+1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]                                                                                   (5) 

(
pm pm−1

qm qm−1
) (

S−k

T−k
) = ± (

Pr+k−(i+1)

Qr+k−(i+1)
) , k ≥ i                                                                                 (6)           

Also i = 3 bn−1 = 1 while bn = bn−1 = 1 i = 3  

Define integers α and β by 

pmα + pm−1β = p, qmα + qm−1β = q 

Then g(α, β) = μ and there exists an integer k such that (α, β) = ±(Sk, Tk). Hence 

(
p
q) = (

pm pm−1

qm qm−1
) (

Sk

Tk
) , k ≥ −1 

Let i be the integer satisfying equation (5) and (6). If i = 1 or 2, then by equation (4) and (6) 

(
p
q) = ± (

ph

qh
)  or (

Ph

Qh
) 

for some h and  
q

q
  is a convergent to  ρ or σ. If i = 3, then (

Sk

Tk
) occurs in equation (4) or (6) for all 

k ≠ −2. Hence either p or q  is a convergent to ρ  or σ or 

(
p
q) = ± (

pm pm−1

qm qm−1
) (

S−2

T−2
)  
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(
p
q) = ± (

pm pm−1

qm qm−1
) (

1
−bn

)  

  (p, q) = ±(pm − bnpm−1, qm − bmqm−1) 

However we can interchange ρ  and  σ  and deduce 

 (p, q) = (pr − bn − 2pr−1, Qr − bn − 2Qr−1) 

If bn = 2, we have qm − bnqm−1 = qm − qm−1 > 0 

(p, q) = (pm − pm−1, qm − qm−1). If bn > 1, then bn−1 = 1 and  g(S−2, T−2) = μ, it 

follows bn−2 = 1. 

Hence Qr − bn − 2Qr−1 = Qr − Qr−1 > 0 and (p, q) = (Pr − Pr−1, Qr − Qr−1). 

4. DISCUSSION 

Solution of Quadratic Diophantine Equation 

Quadratic Diophantine equation 

 ax2 + bxy + cy2 = N                                                                                                                           (7) 

can be transformed into Pell's equation x2 − dy2 = N by using linear transformations with integral 

coefficients. The problem of determining all the solutions of the equation (7) in integers u and v, then 

reduces to the problem of finding all the integral solutions x and y of (7) which satisfy certain linear 

congruences [14]. The structure of the integer solutions of equation (7) given in Skolem [22]. The 

primitive solutions x + y√d of the equation (7) fall into equivalence classes, with x + y√d and x0 +

y0√d being equivalent if and only if 

2ax + by + y√d =
(u + v√d)

2
(2ax0 + by0 + y0√d) 

where u2 − dv2 = 4. These in turn are equivalent to the equations 

x =
(u − bv)

2
(x0 − cvy0), y = avx0 +

(u + bv)

2
y0 

The standard approach to solving the equation (7) is reduction of the quadratic form as in Mathews 

[9]. Then there exist integers α, γ  such that aα2 + bαγ + cγ2 = N0 where gcd(N0, N) = 1. If αδ −
βγ = 1. Then the uni-modular transformation x = αX + βY, y = γX + δY converts the form ax2 +
bxy + cy2 = N  to  a0X2 + b0XY + c0Y2 = N0. The two forms represent the same integers and 

consequently we can assume, without loss of generality, that gcd(a, N) = 1. 

In 1770, Lagrange [20] gave an algorithm if the equation (7) is solvable in integers x, y and in the case 

of solvability constructing solutions when gcd(a, b, c) = gcd(a, N) = 1 and d = b2 − 4ac > 0, is not 

a perfect square. 

M. Pavone [18] solved the equation (7) if N = |μ| where 

μ = min
(x,y)≠(0,0)

|ax2 + bxy + cy2 = N| 

He had essentially solved the equation (7) in general, as Lagrange showed how to reduce the problem 

to the case N = ±1. The continued fractions approach also has the attraction that it produces the 

solution (x, y) with least positive y from each class,  if gcd(a, N) = 1. 

Multiplying both sides of equation (7) by 4a , then we have 

(ax + by)2 − dy2 = 4aN                                                                                   (8) 

where d = b2 − 4ac, assume that d > 0, not perfect square, is a general Pell's equation. Let (un, vn)  

be the general solution to its Pell's resolving  u2 − dv2 = 1  and (α, β) be the fundamental solution of 

the class K  to the equation X2 − dY2 = 4aN. 

Theorem  
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All integer solutions (xn, yn)n≥1  to equation ax2 + bxy + cy2 = N are given by 

xn =
(a − bβ)un − (bα − dβ)vn

2a
, yn = βun + αvn  

where (un, vn)n≥1 is the solution to the Pell's resolving and (α, β) is the fundamental solution of the 

class K. 

Proof 

We have (ax + by)2 − dy2 = 4aN  where d = b2 − 4ac, assume that d > 0, not perfect square. Put 

X = 2ax + by, Y = y, N1 = 4aN, 

we have general solution to 

X2 − dY2 = N1    are 

 Xn = αun + dβvn,       yn = βun + αvn 

So  

2axn + byn = αun + dβvn 

  xn =
(a−bβ)un−(bα−dβ)vn

2a
,     yn = βun + αvn 

Which is general solution to equation (ax + by)2 − dy2 = 4aN  . 

Next, we want to show that xn is an integer. For this, it is enough to show that 2a|(α − bβ) and  

2a|(αb − βd). 

Indeed, we have 

(α − bβ) = 2ax and    (𝛼𝑏 − 𝛽𝑑) = αb − β(b2 − 4ac) 

= (α − bβ)b + 4acβ 

 = 2axb + 4acβ 

= 2a(xb + 2cβ) 

5. CONCLUSION 

Diophantine equations are rich in variety. There is no universal method for finding all possible integer 

solutions for quadratic Diophantine equations. In this paper, we investigate positive integral solutions 

of the quadratic Diophantine equation ax2 + bxy + cy2 = N which is transformed into Pell's equation 

by different methods and we try to find all positive integer solutions. 
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