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1. INTRODUCTION 

The maximal flow-minimal cut problem is much studied in the literature (cfr [5], [4], [12]), due to its 

numerous applications, namely in the conception and the exploitation of the telecommunication 

networks, in the exploitation of the road transportation networks, in the water adduction systems, in the 

electric networks, in the computer networks, etc. It’s a problem of transportation where a product is 

conveyed from the source of this product to its destination via a network, for instance a road network.  

Each road has a transportation capacity. The network which connects the origin to the destination can 

be modeled by the Graph Theory as a transportation network. One is interested then, to the link (relation) 

between the maximal flow quantity which circulates in the network and the capacity of edges which 

transports this maximal flow. 

Apart from the introduction and the conclusion, this paper is structured as follows: 

The second section is devoted to the fuzzy arithmetic, the third section presents the literature review, 

the fourth and fifth sections give a glance on the classical maximal flow and minimal cut problem, 

respectively. 

In the remaining part of this paper, we deal with the fuzzy flow problem, the fuzzy cut problem and the 

maximal fuzzy flow-minimal fuzzy cut theorem. 

2. FUZZY ARITHMETIC BASED ON ALPHA-CUTS AND ARITHMETIC INTERVALS. 

Proposition 2.1 (Cfr Ritha & Menon [13]). 

Let �̃� and �̃�′ be two fuzzy numbers with respective 𝛼 − 𝑐𝑢𝑡𝑠 �̃�𝛼and �̃�𝛼
′ , with 𝛼 ∈ [0,1]. 

The operations +, -, x and ÷ are defined on �̃� and �̃�′ via their 𝛼 − 𝑐𝑢𝑡𝑠 as follows : 

(�̃� + 𝑄′̃)
𝛼

= �̃�𝛼 + 𝑄′̃𝛼                                                              (1) 

(�̃� − 𝑄′̃)
𝛼

= �̃�𝛼 − 𝑄′̃𝛼                                                              (2) 

(�̃� × 𝑄′̃)
𝛼

= �̃�𝛼 × 𝑄′̃𝛼                                                              (3) 

(�̃� ÷ 𝑄′̃)
𝛼

= �̃�𝛼 ÷ 𝑄′̃𝛼                                                              (4) 
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Abstract: In this paper, we state and we prove the fuzzy version of the maximal flow-minimal cut theorem, 

which was stated in the past in crisp environment by Ford and Fulkerson. To illustrate this result, we use 
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The four equalities above are summarized in the general proposition stated by Hanss [3], for a given 

fuzzy arithmetic operations as follows: 

Let �̃� and �̃�′ be two fuzzy numbers with respective 𝛼 − 𝑐𝑢𝑡𝑠 �̃�𝛼and�̃�𝛼
′ , with 𝛼 ∈ [0,1]. We have: 

(�̃�⨂𝑄′̃)
𝛼

= �̃�𝛼 ∗ 𝑄′̃𝛼                                                              (5) 

Where * is an arithmetic operation defined in the family of closed intervals of ℝ by : 

∀[𝑎1, 𝑏1], [𝑎2, 𝑏2] ∈ ℝ, 

[𝑎1, 𝑏1] ∗ [𝑎2, 𝑏2] = [𝑚𝑖𝑛𝐺, 𝑚𝑎𝑥𝐺]                                                (6) 

Where, 

𝐺 = {𝑎1 ∗ 𝑎2, 𝑎1 ∗ 𝑏2, 𝑏1 ∗ 𝑎2, 𝑏1 ∗ 𝑏2} 

Mukeba [11] gives the following schema: 

1°) The defuzzification : write the 𝛼-cuts of the concerned fuzzy numbers in the form of classical 

intervals. In particular, if 𝑄 ̃ = (𝑎, 𝑏, 𝑐) is a triangular fuzzy number, then : 

�̃�𝛼 = [𝑎 + (𝑏 − 𝑎)𝛼, 𝑐 + (𝑏 − 𝑐)𝛼],         ∀𝛼 ∈ [0,1]                                  (7) 

2°) The ordinary calculations : application of relation (6). 

3°) The fuzzification : fuzzify the result obtained above by applying the following relation:  

𝜂�̃�(𝑥) = 𝑚𝑖𝑛𝛼∈[0,1]
𝑠𝑢𝑝

{𝛼, 𝜂�̃�𝛼
(𝑥)}                                                 (8) 

Where 

𝜂�̃�𝛼
(𝑥) = {1                             𝑠𝑖 𝑥 ∈ �̃�𝛼

0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                    (9) 

Where 𝜂�̃� is the membership function of the fuzzy number �̃�. 

Thus, ∀ [𝑎1, 𝑏1], [𝑎2, 𝑏2] ⊂ ℝ : 

[𝑎1, 𝑏1] ∗ [𝑎2, 𝑏2] = {𝑎 ∗ 𝑏|𝑎1 ≤ 𝑎 ≤ 𝑏1 𝑒𝑡 𝑎2 ≤ 𝑏 ≤ 𝑏2}                   (10) 

[𝑎1, 𝑏1] + [𝑎2, 𝑏2] = [𝑎1 + 𝑎2, 𝑏1 + 𝑏2  ]         (11) 

[𝑎1, 𝑏1] − [𝑎2, 𝑏2] = [𝑎1 − 𝑏2, 𝑏1 − 𝑎2  ]         (12) 

[𝑎1, 𝑏1] × [𝑎2, 𝑏2] = [min (𝑎1𝑎2, 𝑎1𝑏2, 𝑏1𝑎2, 𝑏1𝑏2), max (𝑎1𝑎2, 𝑎1𝑏2, 𝑏1𝑎2, 𝑏1𝑏2)  ]    (13) 

[𝑎1,𝑏1]

[𝑎2,𝑏2]
= [min (

𝑎1

𝑎2
,

𝑎1

𝑏2
,

𝑏1

𝑎2
,

𝑏1

𝑏2
), max (

𝑎1

𝑎2
,

𝑎1

𝑏2
,

𝑏1

𝑎2
,

𝑏1

𝑏2
)  ]                                        (14) 

The multiplication and the division are simplified if the information on the signs of the bounds is 

available. 

3. LITERATURE REVIEW 

The problem of flow has been studied for the first time by Harris and Ross in 1954 ([2] and [6]). To 

solve it, Ford and Fulkerson set up the well-known algorithm based on the flow increase along the edges 

about the end of 1956 [2]. Ever since, it constitutes an important research area due to its numerous 

applications evoked above [6]. This famous algorithm has been enriched by the contribution of many 

variants. Rozemberg [14] has investigated the “minimum cost flow problem”. He has introduced the 

fuzzy flow problem and proposed a dynamical programming based resolution method [12]. Liu and 

Kao have studied the flow problem in a transportation network using fuzzy edges.  

Bagherian has proposed a fuzzy residual network approach to solve the minimum cost flow problem 

with fuzzy parameters [1]. In the same period, other research works on the minimum cost fuzzy flow 

problem where published by Ghatee, Grupta and Pal, Okada and Gent []. Karzanov has set up a flow 

increasing based method to determine the maximal flow [5]. Nawathe & Kao has focused their research 

on the study of the maximal flow distribution in a transportation network by exploiting the Karzonov’s 

method [6]. Dinic has investigated the problem of flow distribution in a transportation network with 
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fuzzy capacities, using the comparison methods []. Kumar and Kaur [6] have solved the maximal fuzzy 

flow problem by using the linear programming, but they concluded that it was not possible to obtain 

the optimal solution because of the heaviness of the fuzzy tasks. 

Those various researches on the flow enabled to improve the understanding and the resolution methods 

of the flow and cut problem in a deterministic environment.   

4. THE CLASSICAL FLOW PROBLEM 

4.1. Definition of the problem 

Let’s consider a network (𝑃, 𝐾) on the set of communications where a function of edges capacities 

𝑐(𝑖, 𝑗);  𝑘𝑖𝑗 = (𝑖, 𝑗) ∈ 𝐾 

Let’s select two points of the network 𝑝1 and 𝑝𝑛, where 𝑝1 is called “origin” and 𝑝𝑛 the “destination”. 

Let 𝐸𝑖, the set of communications of the network outgoing from 𝑝𝑖, and 𝐸𝑖
′ the set of communications 

entering into 𝑝𝑖. 

A function 𝑥 defined on the set 𝐾 by: 

𝑥(𝑖, 𝑗) = 𝑥𝑖𝑗 , satisfying the following conditions ([9], [4]): 

∑ 𝑥𝑖𝑗

𝑘𝑖𝑗∈𝐸𝑖

− ∑ 𝑥𝑖𝑗

𝑘𝑖𝑗∈𝐸𝑖
′

= 0                                                  ∀𝑖 ≠ 1, 𝑛                                                                (15) 

𝑥1 = ∑ 𝑥𝑖𝑗

𝑘𝑖𝑗∈𝐸𝑖
′

− ∑ 𝑥𝑖𝑗

𝑘𝑖𝑗∈𝐸1

≥ 0                                                                                                                      (16) 

∀𝑘𝑖𝑗 ∈ 𝐾; 0 ≤ 𝑥(𝑖, 𝑗) ≤ 𝑐(𝑖, 𝑗)                                     (17)

  

is called “network flow” compatible with the function 𝑐(𝑖, 𝑗); 

𝑘𝑖𝑗 ∈ 𝐾; and directed from 𝑝1 and 𝑝𝑛. 

A flow represents a flux of material routing from a source “s” to a destination “t”. 

The equation (7) indicates that the flow quantity on an edge must be less or equal to the edge capacity. 

Furthermore, it’s not possible to store or to produce material on intermediate nodes. This property is 

translated by the equation (15). The relation (16) translates the principle of the flow conservation. 

4.2. The Maximal flow problem 

Given the edges capacities in a transportation network, the maximal flow problem consists to find the 

maximal quantity of flow which can be routed from the source to the destination. Ford and Fulkerson’s 

algorithm ([9], [4]) is well known to solve this problem. 

5. THE CLASSICAL MINIMUM CUT PROBLEM IN A TRANSPORTATION NETWORK 

Let 𝑠 and 𝑡 be two vertices of a network 𝑅 = (𝑃, 𝐾). 

- A (𝑠, 𝑡) cut is a set 𝐶 of edges disconnecting 𝑠 and 𝑡 : in the partial graph (𝑃, 𝐾 ∖ 𝐶), there 

doesn’t exist any directed path from 𝑠 and 𝑡. 

- A (𝑠, 𝑡) cut is also defined by a partition 𝐶 = 𝑆 ∪ 𝑇of vertices such that 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇. 

Then the edges (𝑥, 𝑦) of a cut are those one having their origin 𝑥 in 𝑆 and their destination 𝑦 in 𝑇. 

- The capacity of a cut is the sum of capacities of the edges which compose this cut. 

The problem of “minimum cut” consists to find a cut 𝐶𝑚𝑖𝑛 between 𝑠 and 𝑡 of a minimum capacity. 

([9], [4]). 

- A cut is an obliged passage for any flow. In fact, any flow transiting from and 𝑠 to  𝑡 must 

necessarily “borrow” the edges of the cut (any path from 𝑠 to 𝑡 includes at least one by definition). The 

value of the flow can be redefined as the difference between the outgoing flow and the entering one. 
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Theorem 5.1 ([5]& [12]) 

In a transportation network carrying a flow, the following assertions are equivalent: 

(1) The flow is maximal 

(2) There exists no increasing path from the source 𝑠 to the destination 𝑡.  

(3) There exists a maximal flow 𝑥𝑚𝑎𝑥 less or equal than the capacity of the cut. 

Theorem 5.2 ([2]) 

The maximal value of a flow from a source 𝑠 to a destination 𝑡 in a network is equal to the minimal 

capacity of a (s,t)-cut. 

So, we have : 

𝑥𝑚𝑎𝑥 = 𝐶𝑚𝑖𝑛 

6. THE PROBLEM OF FUZZY FLOW 

Let (𝑃, 𝐾) be a transportation network where a capacity function �̃� is defined. To edge 𝑘𝑖𝑗 = (𝑖, 𝑗) ∈

𝐾, a fuzzy positive number �̃�𝑖𝑗is associated. Let’s select two vertices of the graph denoted by 𝑝1and 𝑝𝑛, 

where 𝑝1is the entrance and 𝑝𝑛the exit. 

Let 𝐸𝑖, the set of communications of the network outgoing from 𝑝𝑖, and 𝐸𝑖
′ the set of communications 

entering into 𝑝𝑖. 

As all the edges are positively valuated by fuzzy numbers, this graph is a fuzzy transportation network. 

We denote it by (𝑃, 𝐾, �̃�), where �̃� is the set of fuzzy capacities. 

A fuzzy function �̃� defined on the set K, associating to each edge (𝑖, 𝑗) ∈ 𝐾, a fuzzy number �̃�𝑖𝑗 and 

satisfying the following conditions : 

∑ �̃�(𝑖, 𝑗)

𝑘𝑖𝑗∈𝐸𝑖

− ∑ �̃�(𝑗, 𝑖)

𝑘𝑖𝑗∈𝐸𝑖
′

= 0                                                  ∀𝑖 ≠ 1, 𝑛                                                    (18) 

�̃�1 = ∑ �̃�(𝑗, 𝑖)

𝑘𝑖𝑗∈𝐸𝑖
′

− ∑ �̃�(𝑖, 𝑗)

𝑘𝑖𝑗∈𝐸1

≥ 0                                                                                                          (19) 

∀𝑘𝑖𝑗 ∈ 𝐾; 0 ≤ �̃�(𝑖, 𝑗) ≤ �̃�(𝑖, 𝑗)                                     (20)

  

Is called a fuzzy flow of the network (𝑃, 𝐾) consistent with the function �̃� and directed from 𝑝1 and 𝑝𝑛. 

The sense of the so introduced terms can be interpreted in an analogous way as the deterministic flows. 

Remark 6.1 

The inequality " ≤ " in equation (20) is different from the one defined in Mukeba [10]. To define it, we 

are guided by the fuzzy order defined used by Liou and Wang [8], Kumar and Kaur [7], as follows : 

�̃� ≤ �̃� ⇔ 𝑎 + 2𝑏 + 𝑐 ≤ 𝑑 + 2𝑒 + 𝑓                                  (21) 

7. PROBLEM OF MAXIMUM FUZZY FLOW 

7.1. Definitions 

The details in this section are drawn from F. Mamanya and R. Mabela [2]. 

- A fuzzy directed edge (𝑖, 𝑗) is saturated if the modal value of this capacity called “fuzzy number 

kernel” is equal to the modal value of the current flow. 

- For the particular case of the fuzzy triangular numbers : if the capacity of the fuzzy edge is 

�̃�𝑖𝑗 = (𝑎, 𝑏, 𝑐) and the value of the flow is �̃�𝑖𝑗 = (𝑑, 𝑒, 𝑓), with 

 𝑏 = 𝑒, the edge is saturated. 

- A fuzzy path is saturated if it contains at least one saturated edge. 
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- A fuzzy flow is complete if all the paths from source to the destination are saturated. 

- To saturate a fuzzy edge or a fuzzy path, one adds to this edge or this path the residual flow. 

- The residual fuzzy flow on an edge 𝑘(𝑖, 𝑗) denoted �̃�𝑟(𝑖, 𝑗) is equal to the difference between 

the fuzzy capacity of this edge and its fuzzy flow: 

�̃�𝑟(𝑖, 𝑗) = �̃�(𝑖, 𝑗) − �̃�(𝑖, 𝑗)                       (22) 

- The fuzzy residual flow of a path Φ is the minimum of the fuzzy residual flows of the fuzzy 

edges which compose this fuzzy path: 

�̃�𝑟(Φ) = min
(𝑖,𝑗)∈Φ

{�̃�(𝑖, 𝑗) − �̃�(𝑖, 𝑗)}                      (23) 

- The fuzzy residual graph is the one which contains the same vertices as the initial graph but no 

saturated fuzzy edge. It contains two kinds of edges : 

- The fuzzy direct edges (𝑖, 𝑗) whose fuzzy flow is given by : �̃�(𝑖, 𝑗) − �̃�(𝑖, 𝑗) 

- The reverse fuzzy edges (𝑖, 𝑗) whose fuzzy flow is equal to the modal value of the capacity of 

the fuzzy edge (not null). 

- The increase of the fuzzy flow consists to add the minimum value of deviations between the 

current fuzzy flow and the capacities of all the fuzzy flows of the path. 

7.2. Statement of the Maximal Fuzzy Flow Problem. 

Given the capacities of the edges of a fuzzy transportation network, determine the maximal flow 

quantity which circulate from the source to the destination. 

8. FUZZY MINIMAL CUT 

The problem of the fuzzy minimal cut consists in finding a cut 𝐶𝑚𝑖𝑛from s to t having a minimal 

capacity. A cut is an obliged passage for a fuzzy flow. In fact, a fuzzy flow in transit from s to t should 

“borrow” the edges of a cut (any path from s to t has at least one, by definition). The value of the fuzzy 

flow can be defined as the difference between the fuzzy flow outgoing from the cut and the entering 

fuzzy flow. 

9. THE MAXIMAL FUZZY FLOW THEOREM-MINIMAL FUZZY CUT 

The problem of maximal fuzzy flow theorem-minimal fuzzy cut has not been addressed yet in the 

scientific literature. We give, in the remainder of this paper, a first proposal.  In a transportation network 

carrying a fuzzy flow �̃� evaluated by triangular fuzzy numbers, the modal value of the maximal fuzzy 

flow is equal to the value of minimal fuzzy cut: 

�̃�𝑚𝑎𝑥 = �̃�𝑚𝑖𝑛 

Proof: 

Let’s prove that the three following assertions are equivalent: 

(i) The fuzzy flow is maximal 

(ii) There doesn’t exist any increasing fuzzy path between s and t for the fuzzy flow �̃� 

(iii) There exists a fuzzy flow �̃� whose modal value is equal to the cut capacity �̃� 

To set the equivalence between those three assertions, we’ll establish the sequence of the following 

implications: 

(i) ⇒ (𝑖𝑖) 

If there may exist an increasing residual fuzzy path �̃�𝑟, then �̃� + �̃�𝑟would be a fuzzy flow. That 

contradicts the fact that �̃� is a maximal fuzzy flow. 

(𝑖𝑖) ⇒ (𝑖𝑖𝑖) 

Let’s prove that the value of maximal fuzzy flow is equal to the value of minimal fuzzy cut. 

From the following relation : 
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�̃� = �̃�+(𝑆) − �̃�−(𝑆)                                    (24) 

We see that all the fuzzy edges of the cut outgoing from 𝑆+are saturated by the fuzzy flow �̃� and no 

flow is in transit on all the fuzzy edges entering into 𝑆−. Let’s consider a fuzzy edge (𝑥, 𝑦), where 𝑥 ∈
𝑆 and 𝑦 ∈ 𝑇 and let’s assume that (𝑥, 𝑦)is not saturated. Then, there exists a fuzzy path from s to x. 

Extending it to the edge y, we obtain then a path from s to y. This contradicts the fact that 𝑦 ∈ 𝑇.  

Let’s consider an edge (𝑦, 𝑥), where 𝑦 ∈ 𝑇 and 𝑥 ∈ 𝑆. Let’s assume by absurd that the fuzzy flow �̃� is 

not null on this edge, then there exists, in the residual graph, a reverse edge (𝑦, 𝑥) with a non-null 

capacity. Contradicting the fact 𝑦 ∉ 𝑆. 

�̃� = �̃�+(𝑆) − �̃�−(𝑆) = ∑ ∑ �̃�(𝑥, 𝑦)𝑦∈𝑇 − 0 = �̃�𝑥∈𝑆                     (25) 

(𝑖𝑖𝑖) ⇒ (𝑖). As mentioned above in the subsection 7.1, the edge whose modal value of the fuzzy flow 

is equal to the capacity is saturated. The path from 𝑠 to 𝑡 leads to the conclusion that the flot �̃� is 

maximal. 

10. NUMERICAL EXAMPLE 

Let’s determine the maximal fuzzy flow and the minimal fuzzy cut on the following transportation 

network: 

 

Fig1. A transportation network able to carry fuzzy flows. 

The value of fuzzy entry flow = (11, 17, 23) =the value of fuzzy outgoing flow. On each node of the 

network, the sum of entering modal values= the sum of outgoing modal values. The principle of fuzzy 

flow conservation is satisfied. Then, the network under investigation is able to let the fuzzy flow pass. 

Step 1: Searching a complete fuzzy flow 

- Searching the fuzzy flows from  𝑡𝑜 ℎ : a-b-e-h, a-b-e-f-h, a-b-e-f-g-h, a-c-f-h, a-c-d-g-h, a-c-d-

g-h, a-c-f-g-h, a-d-g-h : 7 paths. 

- Determination of non-saturated paths : only one : a-c-f-h 

- The entering flow is not complete 

- Saturation of the path : a-c-f-h 

One computes the residual fuzzy flow on the non-saturated path. 

�̃�𝑟(𝑎 − 𝑐 − 𝑓 − ℎ) = 𝑚𝑖𝑛{(4,6,8) − (2,4,6), (3,5,7) − (−1,1,3), (1,3,5) − (0,2,4)} 

The calculation is done by the 𝛼 − 𝑐𝑢𝑡 approach and intervals proposed by [11], and the max-min 

approach to compare the fuzzy numbers. 

�̃�𝑟(𝑎 − 𝑐 − 𝑓 − ℎ) = 𝑚𝑖𝑛{(−2,2,6), (0,4,8), (−3,1,5) = {(−3,1,5)}} 
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We add to all edges path a-c-f-h to all on every edges of the path a-c-f-h, the residual fuzzy flow. Then, 

the graph becomes: 

 

Fig2. Network expressing the complete fuzzy flow. 

One notices that the value of entering fuzzy flow = (8, 18, 28) =the value of outgoing fuzzy flow. We 

notice that all the paths from a to h are saturated. So, the fuzzy flow is complete. Its value is (8, 18, 28). 
This flow is not necessarily maximal. 

Step 2: Constructing the residual fuzzy graph : increasing path and marking. 

 

Fig3. Path which may be increased 

By the procedure of marking, we search the increasing path from a to h.  

One marks the node a by writing a+, c by c+, f  by  f+, e+ and finally h+ . The fuzzy obtained is 

complete but it’s not maximal. 

Step 3: Determining the maximal fuzzy flow 

It’s concerning the improvement of the fuzzy flow on the increasing chain: 

a-c-f-e-h. 

One calculates the fuzzy residual flow on the chain  a-c-f-e-h. 

 

Nota : To increase the fuzzy flow on the reverse fuzzy edge f-e means to reduce the flow on the edge f-

e. Then, the path becomes: 
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Fig4. Increasing path from a to h. 

 

Fig5. Network carrying the maximal fuzzy flow. 

The value of entering fuzzy flow is = (5, 19, 33) =the value of fuzzy outgoing flow. This value is also 

equal to the value of the minimal cut passing by (𝑔, ℎ), (𝑓, ℎ), (𝑒, 𝑓) 𝑎𝑛𝑑 (𝑏, 𝑒). At each node, the sum 

of central values of entering fuzzy flows is equal to the sum of central values of outgoing fuzzy flows. 

The principle of conservation is satisfied. The maximal flow is then (5, 19, 33). 

Interpretation: The flow circulating through the network can vary between 5 and 35. Its minimal value 

can’t be less than 5, while its maximal value can’t exceed 33. The modal value 19 is the most frequent 

one. The maximal fuzzy flow is about (5, 19, 33).(cfr Fig.5). 

11.  CONCLUSION 

In this paper, we have stated and proved the theorem of maximal flow – minimal cut in a fuzzy 

environment. We have used the fuzzy triangular numbers to illustrate this result. In a transportation 

network carrying a fuzzy flow, the value of maximal fuzzy flow is equal to value of the minimal fuzzy 

cut. In our forthcoming researches, we’ll investigate on the theorem of maximal fuzzy multiflow – 

minimal fuzzy multicut. 
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