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1. INTRODUCTION 

One of the main problems when applying some of the classical techniques is the collinearity among the 

variables used in the models. Collinearity (or multicollinearity or ill-conditioning) occurs when 

independent variables in a regression are so highly correlated that it becomes difficult or impossible to 

distinguish their individual eff ects on the dependent variable [1]. It is a problem in key driver analysis 

because, when two independent variables are highly correlated, it becomes difficult to accurately partial 

out their individual impact on the dependent variable. Also, there is a sufficient amount of “shared” 

variance that all predictors soak up together (yielding a significant R2) but none of the variables account 

for a significant portion of unique variance as seen in the non-significant slopes for each variable. This 

often results in regression coefficients that don’t appear to be reasonable. Such collinearity problems 

can sometimes lead to serious stability problems when the methods are applied [2-3]. While this makes 

it easy to observe the effects of collinearity in the data, developing a solution may not be straightforward [4]. 

Multicollinearity among explanatory variables has received a lot of attention in econometric theory and 

in econometric texts [6-8].  Hair et al. [9] noted that as multicollinearity increases, it is more difficult 

to ascertain the effect of any single variable produce biased estimates of coefficients for regressors 

because the variables have more interrelationships. The literature on linear models with special focus 

on multicollinearity spans several decades already and provides numerous suggestions for diagnosing 

the presence of substantive collinearity ranging from simple rules of thumb to complex indices. 

However, there is still a continuing active interest on the problem. 

Although conducting a multicollinearity diagnosis does not solve nor lead to any specific solution of 

the problem, realizing its potential impact on findings from regression analysis allows a more careful 

interpretation of data. The literature provides numerous suggestions, ranging from simple rules of thumb 

to complex indices, for diagnosing the presence of substantive collinearity. [5] also proposed a 

procedure for detecting multicollinearity which comprised of three tests (i.e. Chi-square test, F-test and 

T-test). However, these tests have been greatly criticized. [10] claims that the third test, where the 

authors use the partial-correlation coefficients is ineffective. The use of condition index for collinearity 
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diagnostics alone is not enough. Some other insight is necessary to find which columns of X are 

involved in the collinearity. [11] has it that multicollinearity is said to be “harmful” if rij ≥ R2. Such 

simple correlation coefficients are sufficient but not necessary condition for multicollinearity. In many 

cases there are linear dependencies, which involve more than two explanatory variables, that this 

method cannot detect [12,13] pointed out that using correlation matrix is unable to reveal the presence 

or number of several coexisting collinear relations [13].  Furthermore, in using variance inflation factor 

(VIF) some authors have stated that multicollinearity is problematic if largest VIF exceeds value of 10, 

or if the mean VIF is much greater than 1.  Although VIF greater than 5 or VIF greater than 10. [14] are 

suggested for detecting multicollinearity, there is no universal agreement as what the cut-off based on 

values of VIF should be used to detect multicollinearity. Caution for misdiagnosis of multicollinearity 

using low pairwise correlation and low VIF was reported in the literature for collinearity diagnostic as 

well. [15] demonstrated that VIF rules of thumb should be interpreted with cautions and should be put 

in context of the effects of other factors that influence the stability of the specific regression coefficient 

estimate and suggested that any VIF cut-off value should be based on practical consideration. [16] 

further suggested VIF to be evaluated against the overall fit of the model, using the model R2 statistics. 

VIF >1/(1-overall model R2) indicates that correlation between the predictors is stronger than the 

regression relationship and multicollinearity can affect their coefficient estimates, while Hair et al.[17] 

suggest variance inflation factors (VIF) less than 10 are indicative of inconsequential collinearity. 

However, there is no formal criteria for determining the magnitude of variance inflation factors that 

cause poorly estimated coefficients. The decision to consider a VIF to be large was essentially arbitrary.  

In summary, reviewing the literature on ways to diagnosing collinearity reveals several points. First, a 

variety of alternatives are available and may lead to dramatically different conclusions based on their 

cutoff points. Second, what might be gained from the different alternatives in any specific empirical 

situation is often unclear. Part of this ambiguity is likely to be due to inadequate knowledge about what 

degree of collinearity is "harmful" [18]. In much of the empirical research on collinearity diagnostics, 

data with extreme levels of collinearity are used to provide rigorous tests of the approach being 

proposed.  Such extreme collinearity is rarely found in actual cross-sectional data. Based on the above 

premises, the purpose of this paper is to investigate the performance of ratio of standardized regression 

slope to semi-partial correlation in a collinear data set. To compare the performance of this robust 

multicollinearity diagnostic method with other existing diagnostic methods (i.e. VIF and 

Condition number) using a Monte Carlo simulation study. Diagnostics are calculated for a 

hypothetical regression model with the aim of identifying the degree of collinearity and the variables 

that are involved (or not involved) in a strong collinear relationship.   

The plan of the paper is as follows. In Section 2, the relationship between standardized regression slope 

to semi partial correlation index with VIF is considered in this section. The simulation and results are 

presented in Section 3. In the last Section 4, findings and some conclusions are reported. 

2. STANDARDIZED REGRESSION SLOPES  

It is well-known that the standardized regression coefficient in a bivariate regression model is the same 

as the bivariate correlation coefficient between the independent and dependent variables. In multiple 

regression analysis, standardized regression coefficients are scale free estimates and are related to 

correlation coefficients, but the relationship is much more complex than in bivariate regression.  The 

standardized regression slope is considered the most common measure of relative importance in 

multiple regression analysis. [19] proposed the standardized regression coefficient as an index for 

synthesizing studies reporting multiple regression analyses. The standardized regression coefficient 

represents the effect of the focal predictor (Xj) or the criterion variable (Y) while controlling for other 

predictors in a model in standard deviation units. Although the variation of predictors (Xs) across 

studies is still a concern, the regression coefficients are standardized, facilitating comparisons across 

studies. 

Standardized coefficients are coefficients adjusted so that they may be interpreted as having the 

same, standardized scale and the magnitude of the coefficients can be directly compared (ranked)The 

greater the absolute value of the standardized coefficient, the greater the predicted change in the proba

bility of the outcome given a 1standard deviation change in the corresponding predictor variable, hold

ing constant the other predictors in the model. For example, consider a regression model with two 

independent variables,  

 
iiii xxy   22110
                                                                                                                                                     (1) 
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where yi is the score on the dependent variable of the ith subject, x1i and x2i are the values of the 

independent variables for the ith subject, 
0 , 

1 and 
2 are population regression coefficients, and 

i

is a residual term, often assumed to be normally distributed with mean of zero and constant variance. 

The associated standardized regression model is                   
*

2
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1

*

ii zzy                                                                                                                                                                     (2) 

where *

1 and *

2 are the standardized regression coefficients in population. The error term, *

i , is 

assumed to be normally distributed with mean of zero and variance of 2* . 

The following standardization converts the matrix XTX into a correlation matrix.  

Let y∗ := yc denote the centered dependent variable as before and put 
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putting (4) in vector notation, we have                   
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All of the scaled regressors have sample mean equal to zero and the Euclidean norm of each column 

kjZZ nij ,....,1,][: 1   of Z is equal to one. The least squares estimator of (5) is given by 
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The coefficients for the standardized model is given by  
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and thus the relationship between the estimates of the original and standardized regression coefficients 

is given by 
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where ry1 is the simple correlation coefficient between y and x1, ry2 is the simple correlation coefficient 

between y and x2, and r12 is the simple correlation coefficient between x1 and x2. The standardized 

regression coefficient for the first independent variable, *

1b , is a function of all the correlation 

coefficients among the variables. When the intercorrelation between the two independent variables is 

zero (i.e., r12 = 0), the standardized regression coefficient, *

1b , is equal to the correlation coefficient, y1r. 

For multiple regression models with more predictors, these formulas are more complex, but the 

simplification that 
1

*

1 yrb   holds if all the intercorrelation values among the predictors are zero 

Peterson and Brown [20] investigated the empirical relationship between simple correlation coefficients 

and standardized regression slopes. In this study 1,504 standardized regression coefficients and 

correlation coefficients from published articles in behavioral journals were collected. The authors 

provided the estimated slope of the regression of the standardized regression slope on the simple 

correlation coefficient, and found a strong relation between simple correlation coefficients and 

standardized regression slopes. 

Semi-Partial Correlation Index   

Aloe [21] proposed the semi-partial correlation index for synthesizing slopes in multiple regression 

models. The semi-partial correlation can typically be obtained from studies reporting multiple 

regressions. Aloe and Becker [22] proposed using the semi-partial correlation as a partial effect size in 

meta-analysis. Specifically, the semi-partial correlation can also be computed as follows: 

1

1 2






pn

R
trsp

                                                                                                                                                                             (8) 

where t is the t-statistic for the focal predictor, R2 is the variance explained by the model, n is the total 

sample size, and p is the number of predictors. The semi-partial correlation index represents the unique 

effect of the focal predictor on the target outcome partialling out the effects of other predictors in the 

model. This index does not include the common effect shared with other predictors on the outcome. 

Thus, when the number of predictors is increased, the values of the semi-partial correlation index tend 

to be smaller. A squared semi-partial correlation represents the proportion of all the variance in Y that 

is associated with one predictor but not with any of the other predictor. Squared Semi-partial correlation 

indicates variable importance because it measures incremental value in R-Square. We can rank variables 

based on high to low values of squared semi-partial correlation score. In terms of residuals, the semi-

partial correlation for Xi is the r between all of Y and Xi from which the effects of all other predictors 

have been removed.   

Relationship with Variance Inflation Factor 

The semi-partial correlation coefficient which is obtained by  
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In summary, the standardized regression slope is related to the raw slope and the semi partial correlation. 

The relation among these three values can be written as 

  VIFr
S

S
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Y
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and the relations among the standard errors of these estimates can be written as 
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X )()(*)(   under the large sample condition. 

3. MATERIALS AND METHODS   

In this section, the estimation of standardized regression coefficients in the cases of three predictor in a 

collinear regression models are addressed. The ordinary least squares estimators of the standardized 

regression parameters to semi partial correlation are presented and compared with other existing 

methods of detecting presence of multicollinearity. In addition, a method is presented for obtaining the 

standard errors of standardized regression slopes. An investigation of the difference between the 

standardized regression slope in a two-predictor model and the simple correlation coefficient is 

presented. Finally, we compare the standardized regression slope to the semi-partial correlation with 

VIF and condition index while varying the number of predictors and intercorrelations among predictors. 

Simulation 

 To understand the role of different diagnostic techniques more clearly we require simulation results 

with a good number of replications considering a variety of sample sizes with three normally distributed 

variables (X1 - X3). We have used the design (9) with n = 50, 100, 200, 500, 1000 and 10000 and the 

results of intercorrelation for different estimation techniques and different sample sizes using SAS 

version 9 software. The variables were created in such a way that X1, X2 and X3 are highly correlated 

by perturbing the error U=RANUNI (START) with 2, 4, 6, 8, and 10.  All of the explanatory variables 

were fixed at 0.5 in value, with mean values of zero and standard deviations of one. This method was 

chosen because it is commonly used and well-understood.  

U= ranuni (start)  

X1=U+rannor (start)*0.5  

X2=U+rannor (start)*0.5  

X3=U+rannor (start)*0.5  

Y=1+X1+X2+rannor (start)                                                                                                                                                           (9) 

That is, to achieve the objective of varying collinearity, we perturb the random error μ by multiplying 

it with values (i.e. 2, 4, 6, 8, and 10). This generates different values of the correlation coefficient among 

the three explanatory variables as shown in table.  

4. RESULT OF ANALYSIS 

Table 1 below shows the comparison of the standardized regression slope and the semi-partial 

correlation while varying the number of predictors and intercorrelations. The first column in Table 1 

represents the sample size, the second column is the intercorrelation among the explanatory variables 

(ρxy), the third column is the standardized regression slope (β*), the fourth column is the semi-partial 

correlation coefficient (rsp), the fifth column shows the difference between the standardized regression 

slope and the semi-partial correlation coefficient (β*- rsp), the sixth column represents the ratio of  the 

standardized regression slope to semi-partial correlation coefficient, the next column represents the 

variance inflation factor (VIF)  and the last column is the condition number (CN).  

Table1. Comparison of the Standardized Regression Slope and the Semi-partial Correlation with Variance 

Inflation Factor and Condition Number 

   n        
xy  

 

ERRORSTD  
*  

spr  
spr*  

spr

*
 

 

VIF  

 

CN  

50  

 

0.30 

 0.22861       0.43398         0.359207 0.074773 1.208160 1.45963 27.76 

100 0.92639        0.40338         0.333392 0.069988 1.209928 1.46402 21.87 

200 0.97960        0.44125         0.344427 0.096823 1.281113 1.64127 23.30 

500 0.08326      0.47061         0.359096 0.111514 1.310541 1.71751 23.20 

1000 0.05817      0.43756         0.340367 0.097193 1.285552 1.65266 21.21 

10000 0.01746      0.45358         0.346684 0.106896 1.308337 1.71172 21.91 

50  

 

0.70 

0.21609       0.45013         0.290345 0.159785 1.550330 2.40357 59.38 

100 0.19048       0.43808         0.28233 0.15575 1.551662 2.40771 45.60 

200 0.13330       0.47478         0.287715 0.187065 1.650174 2.72306 49.69 

500 0.08128      0.49583         0.294669 0.201161 1.682666 2.83149 49.30 
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1000 0.05659      0.46086         0.279732 0.181128 1.647505 2.71420 45.18 

10000 0.01706      0.47251         0.282046 0.190464 1.675294 2.80665 47.34 

50  

 

0.89 

0.20859       0.46390         0.195959 0.267941 2.367330 5.60388 160.64 

100 0.18344       0.47010         0.198494 0.271606 2.368330 5.60951 122.01 

200 0.12991       0.50333         0.200175 0.303155 2.514451 6.32216 134.75 

500 0.08001      0.51853         0.203715 0.314815 2.545364 6.47848 132.35 

1000 0.05554      0.48242         0.193598 0.288822 2.491871 6.20997 122.04 

10000 0.01680      0.48961         0.193985 0.295625 2.523964 6.37116 128.77 

50  

 

0.93 

0.20640       0.46846         0.144603 0.323857 3.239631 10.49757 312.29 

100 0.18092       0.48157         0.148526 0.333044 3.242326 10.51049 236.21 

200 0.12875 0.51294         0.149332 0.363608 3.434900 11.79617 262.47 

500 0.07960      0.52655         0.152086 0.374464 3.462197 11.98580 256.54 

1000 0.05520      0.49064         0.144672 0.345968 3.391395 11.50085 237.35 

10000 0.01673      0.49609         0.14481 0.35128 3.425794 11.73688 250.92 

50  

 

0.97 

0.20522       0.47039         0.113842 0.356548 4.131955 17.07287 514.28 

100 0.17928       0.48671         0.117686 0.369024 4.135665 17.09881 388.18 

200 0.12802       0.51701         0.118195 0.398815 4.374221 19.13606 432.74 

500 0.07936      0.53000         0.120499 0.409501 4.398378 19.34620 421.79 

1000 0.05499      0.49449         0.114717 0.379773 4.310519 18.57875 391.11 

10000 0.01668      0.49910         0.114804 0.384296 4.347403 18.89659 413.75 

We observe from the results presented in the above table that the performance of the ratio of 

standardized regression slope to semi-partial correlation coefficient (RSSR) is very much similar to the 

variance inflation (VIF) method in the detecting collinearity. But the performance of standardized 

regression slope to semi-partial correlation coefficient is outstanding. Values obtained by this method 

are very close to their corresponding errors which are reflected in their very interrelationship. A closer 

look at the table shows that the ratio of standardized regression slope to semi-partial correlation reveals 

responds more even to the standard error than variance inflation factor (VIF) and condition number 

(CN). This is confirmed in the plot of standard error against the selected diagnostic techniques. Figure 

1 plots shows the empirical distributions of the standardized regression slopes to semi partial correlation 

coefficients (RSSC) with the variance inflation factor (VIF) and condition number (CN).  As can be 

seen in Figure 1.1, Figure 1.2 and Figure 1.3 the graph of ratio of standardized regression slope to semi-

partial correlation responds to every shock in standard error resulting from collinearity. This was unlike 

the case of variance of inflation factor which responded at the initial stage. The worst case scenario is 

the condition number which did not respond to the standard error in spite degree of collinearity and 

sample size. 

 

Fig.1.1. Ratio of Standardized Regression slope to semi-partial coefficient with standard error of the model 

 

Fig.1.2. Variance Inflation Factor with standard error of the model 
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Fig.1.3. Graph of Condition number with standard error of the model 

Figure 2 shows the ratio of standardized regression slopes to semi-partial correlation, variance inflation 

factor and condition number for the three predictor models for all conditions. The graph reveals that the 

empirical distributions of RSSR become narrower as sample sizes become larger. As shown in Figure 

2.1, the semi-partial correlation coefficient dramatically decreases across higher intercorrelations for all 

panels. The graph shows that the ratio of the standardized slope to semi partial correlation (RSSR) 

appears to be consistent when compared with VIF which exhibited slight deviation for very strong 

collinearity as the sample increases. The VIF and CN, the estimated variance inflation factor and 

condition number have larger variance when predictors are highly correlated for the three predictor 

models. For condition number, it was trending all through samples. In other words, it is unbounded.    

 

Figure2.1. Ratio of Standardized Regression slope to Semi-partial correlation at different degree of correlation 

and sample size. 

 

Figure2.2. Graph of Variance Inflation  at different degree of correlation and sample size. 
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Figure2.3. Graph of Condition Number at different degree of correlation and sample size. 

5. CONCLUSION 

The adverse impact of ignoring multicollinearity on findings and data interpretation in regression 

analysis is very well documented in the statistical literature. The failure to identify and report 

multicollinearity could result in misleading interpretations of the results. Using the ratio of standardized 

regression slope to semi-partial correlation coefficient, this technique seem to be more sensitive to the 

multicollinearity among predictors in the model than the variance inflation factor and condition number 

methods. Although the ratio of standardized regression slope to semi-partial correlation coefficient 

method performs much better than variance inflation factor and condition number as an ill-conditioned 

model diagnostic, its performance is not entirely satisfactory. We therefore recommend using the ratio 

of standardized regression slope to semi-partial correlation coefficient method with a little caution about 

its sensitivity to severe collinearity. 
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