The Inequalities of Positive Semi-Definite Block Matrix with Partial Order Relations

Hui Quan*
Department of mathematics, Xiangtan University, Xiangtan411105, China

Abstract

*Corresponding Author: Hui Quan, Department of mathematics, Xiangtan University, Xiangtan 411105, China

Abstract

In 2019, Zübeyde Ulukök obtained an important theorem in reference [1]: When $H_{H}=\left[\begin{array}{cc}A & C \\ C^{*} & B\end{array}\right]$ is a positive semi-definite matrix, then $H^{r} \leq 3\left[\lambda_{1}(A)+\lambda_{1}(B)\right]^{r-1}\left[\begin{array}{ll}A & \\ & B\end{array}\right]$, where A, B are n-order square matrices. In this paper, we firstly do the same thing for a 3×3 positive semi-definite block matrix, and give a generalization of the above theorem. Next, we further generalize the case of $k \times k$ positive semi-definite block matrix, and discuss the partial ordering relationship between the sum of matrices on quasi-diagonal lines and block matrices at other locations. Thus, we gave a new eigenvalue inequality.

Keywords: Positive Semi-Definite Matrix Hermitian Matrix Partial Order Relation

1. Introduction and Preliminaries

Inequalities of positive semi-definite block matrices have been widely used in matrix theory. In recent years, inequalities about block matrices have become a hot topic of research. At the same time, some very good results have been obtained, such as references $[1,3,4,5]$. In this paper, we mainly discussed some positive semi-definite block matrices and obtained some matrix inequalities.

As we all know, the positive semi-definite block matrices have very good properties. Their eigenvalues are real numbers, so they can always be arranged in ascending order and we recorded then as $\lambda_{n}(A) \leq \cdots \leq \lambda_{2}(A) \leq \lambda_{1}(A)$. In this paper, we use symbol $\lambda_{1}(A)$ to represent the largest eigenvalue of a positive semi-definite matrix A. And use symbol $A \leq B$ to represent $B-A$ be a positive semi-definite matrix, obviously, " \leq " is a partial order relation. In particular, $A \geq 0$ denotes that matrix A is positive semi-definite. In addition, we call U a unitary matrix if it satisfies $U^{*} U=I$, we call A a Hermitian matrix if it satisfies $A^{*}=A$. Last, the $A \oplus B$ denotes the direct sum of A and B, the block diagonal $\operatorname{matrix}\left[\begin{array}{ll}A & 0 \\ 0 & B\end{array}\right]$; and 0 represents a zero block matrix.

2. Main Results

Let's start with the following lemmas
Lemma1.1 Let $A \in M_{m, n}$ with $m \geq n$, then $\lambda\left(A A^{*}\right)=\lambda\left(A^{*} A \oplus 0\right)$ with $0 \in M_{m-n}$.

Lemma1.2 Let ${ }_{A \in M_{n}}$ be positive semi-definite matrix. Then $\lambda_{n}(A) I \leq A \leq \lambda_{1}(A) I$, where I denotes
the identity matrix in M_{n}.

Lemma1.3 If $\left(\begin{array}{ll}A & B \\ B & A\end{array}\right)$ is a positive semi-definite matrix, then $A \geq B$.
Proof Just consider the equation $A-B=\frac{1}{2}\left(\begin{array}{ll}I & -I\end{array}\right)\left(\begin{array}{ll}A & B \\ B & A\end{array}\right)\binom{I}{-I} \geq 0$ and we can get the conclusion.
Lemma1.4 If $\left(\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right)$ is a positive semi-definite matrix, A, C are square matrices of the same order, then we have $A+C \geq B+B^{*}$ and $A+C \geq-\left(B+B^{*}\right)$.

Proof Becase $\left(\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right)$ is a positive semi-definite matrix, So, for any unitary matrix U, we have $U^{*}\left(\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right) U \geq 0, \quad$ thus there is $\left(\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right)+U^{*}\left(\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right) U \geq 0 . \quad$ In particular, take $U=\left(\begin{array}{ll}0 & I \\ I & 0\end{array}\right)$,then we have $\left(\begin{array}{cc}A+C & B+B^{*} \\ B+B^{*} & A+C\end{array}\right) \geq 0$. From lemma 1.3 we can get that
$A+C \geq B+B^{*}$. And we can draw another conclusion by replacing the original B with $-B$.
Lemma1.5 If $H \in M_{n}$ is a positive semi-definite matrix, then for any $n \times k$ unitary matrix U satisfying $U^{*} U=I_{k}$ and for each $i=1, \ldots, k$, we have $\lambda_{i+m-k}(H) \leq \lambda_{i}\left(U^{*} H U\right) \leq \lambda_{i}(H)$.

Theorem $1_{H}=\left[\begin{array}{ccc}A & D & E \\ D^{*} & B & F \\ E^{*} & F^{*} & C\end{array}\right]$ is a positive semi-definite matrix, where A, B, C are all n-order square matrices, then
$H^{r} \leq 3\left[\lambda_{1}(A)+\lambda_{1}(B)+\lambda_{1}(C)\right]^{r-1}\left[\begin{array}{llll}A & & \\ & B & \\ & & C\end{array}\right] \quad$ for $r \geq 1$.
ProofBecause H is a positive semi-definite matrix, so there exists an invertible matrix P such that $H=P^{*} P$. We divide P into blocks: $P=[X, Y, Z]$, where $X, Y, Z \in M_{3 n \times n}$, and we can know that $X^{*} X=A, \quad Y^{*} Y=B, \quad Z^{*} Z=C$. From Lemma 1.1, we can get the following results: $\lambda_{1}\left(X X^{*}\right)=\lambda_{1}\left(X^{*} X \oplus 0\right)=\lambda_{1}(A), \lambda_{1}\left(Y Y^{*}\right)=\lambda_{1}\left(Y^{*} Y \oplus 0\right)=\lambda_{1}(B)$,
$\lambda_{1}\left(Z Z^{*}\right)=\lambda_{1}\left(Z^{*} Z \oplus 0\right)=\lambda_{1}(C)$.

Noting that the following equation holds: $H^{r}=\left(P^{*} P\right)^{r}=P^{*}\left(P P^{*}\right)^{r-1} P$, and we denote
$T=\left(P P^{*}\right)^{r-1}$. So, for H^{r}, there is the following decompositions :
$H^{r}=P^{*} T P=\left[\begin{array}{lll}X^{*} T X & X^{*} T Y & X^{*} T Z \\ Y^{*} T X & Y^{*} T Y & Y^{*} T Z \\ Z^{*} T X & Z^{*} T Y & Z^{*} T Z\end{array}\right]=\left[\begin{array}{lll}X & & \\ & Y & \\ & & Z\end{array}\right]\left[\begin{array}{lll}T & T & T \\ T & T & T \\ T & T & T\end{array}\right]\left[\begin{array}{lll}X & & \\ & Y & \\ & & Z\end{array}\right]$
We notice that $\left[\begin{array}{lll}T & T & T \\ T & T & T \\ T & T & T\end{array}\right]=\left[\begin{array}{lll}T^{\frac{1}{2}} & 0 & 0 \\ T^{\frac{1}{2}} & 0 & 0 \\ T^{\frac{1}{2}} & 0 & 0\end{array}\right]\left[\begin{array}{lll}T^{\frac{1}{2}} & 0 & 0 \\ T^{\frac{1}{2}} & 0 & 0 \\ T^{\frac{1}{2}} & 0 & 0\end{array}\right]$, and $\lambda\left[\begin{array}{lll}T & T & T \\ T & T & T \\ T & T & T\end{array}\right]=3 \lambda(T)$.
So, from lemma 1.2. We can get that:
$H^{r} \leq 3 \lambda_{1}(T)\left[\begin{array}{lll}X & & \\ & Y & \\ & & Z\end{array}\right]^{*} \cdot\left[\begin{array}{lll}X & & \\ & Y & \\ & & Z\end{array}\right]=3 \lambda_{1}(T)\left[\begin{array}{lll}A & & \\ & B & \\ & & C\end{array}\right]=3 \lambda_{1}\left(P P^{*}\right)^{r-1}\left[\begin{array}{lll}A & & \\ & B & \\ & & C\end{array}\right]$
$=3 \lambda_{1}^{r-1}\left(X X^{*}+Y Y^{*}+Z Z^{*}\right)\left[\begin{array}{lll}A & & \\ & B & \\ & & C\end{array}\right] \leq 3\left[\lambda_{1}\left(X X^{*}\right)+\lambda_{1}\left(Y Y^{*}\right)+\lambda_{1}\left(Z Z^{*}\right)\right]^{r-1}\left[\begin{array}{llll}A & & \\ & B & \\ & & C\end{array}\right]$
$=3\left[\lambda_{1}(A)+\lambda_{1}(B)+\lambda_{1}(C)\right]^{r-1}\left[\begin{array}{llll}A & & \\ & B & \\ & & C\end{array}\right]$. So, the theorem is proved.
On the basis of this conclusion, we can easily get the results of Zübeyde Ulukök in reference[1]:
Corollary $1 H=\left[\begin{array}{cc}A & C \\ C^{*} & B\end{array}\right]$ is a positive semi-definite matrix, where A, B are n-order square matrices, then
$H^{r} \leq 3\left[\lambda_{1}(A)+\lambda_{1}(B)\right]^{r-1}\left[\begin{array}{ll}A & \\ & B\end{array}\right]$ for $r \geq 1$.
Next, we will discuss the case of $k \times k$ positive semi-definite block matrices and explore the relationship between quasi-diagonal matrices and other block matrices at other locations.
Theorem $2 \boldsymbol{H}=\left[\begin{array}{cccc}M_{11} & M_{12} & \cdots & M_{1 k} \\ M_{12}^{*} & M_{22} & \cdots & M_{2 k} \\ \vdots & \vdots & \ddots & \vdots \\ M_{1 k}^{*} & M_{2 k}^{*} & \cdots & M_{k k}\end{array}\right]$ is a positive semi-definite matrix, and $M_{11}, \ldots, M_{k k}$ are all n-order square matrices, if it satisfied $M_{i j}$ are all Hermitian matrices, for
$(1 \leq i \leq j \leq n)$, then
$\sum_{i=1}^{k} M_{i i} \geq \frac{2}{k-1} \sum_{1 \leq i<j \leq n} M_{i j}$
Proof First of all, notice the following facts: if U_{1}, \ldots, U_{k} are all unitary matrices, A is a positive semi-definite matrix, then $U_{1}^{*} A U_{1}+\ldots U_{k}^{*} A U_{k}$ is still a positive semi-definite matrix.

After calculation, we can get that $\sum_{i=1}^{k-1} \sum_{i=i+1}^{k}\left(\begin{array}{ll}M_{i i} & M_{i l} \\ M_{i l} & M_{l l}\end{array}\right) \geq 0$. From lemma 1.4 we can get that : $\sum_{i=1}^{k-1} \sum_{l i+i+1}^{k}\left(M_{i i}+M_{l l}\right) \geq \sum_{i=1}^{k-1} \sum_{l=i+1}^{k}\left(M_{i l}+M_{i l}\right)=2 \sum_{1 \leq i<j \leq n} M_{i j}$,

So, there is $\sum_{i=1}^{k} M_{i i} \geq \frac{2}{k-1} \sum_{1 \leq i<j \leq n} M_{i j}$.
Corollary $2 \operatorname{lf}\left(\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right)$ is a positive semi-definite matrix, A, C are square matrices of the same order, and B is a Hermitian matrix, then $\operatorname{tr} B \leq \max \{\operatorname{tr} A, \operatorname{tr} B\}$.
Theorem3 $H=\left[\begin{array}{cccc}M_{11} & M_{12} & \cdots & M_{1 k} \\ M_{12}^{*} & M_{22} & \cdots & M_{2 k} \\ \vdots & \vdots & \ddots & \vdots \\ M_{1 k}^{*} & M_{2 k}^{*} & \cdots & M_{k k}\end{array}\right]$ is a positive semi-definite matrix, and $M_{11}, \ldots, M_{k k}$ are all n-order square matrices, if it satisfied $M_{i j}$ are all Hermitian matrices, $\operatorname{for}(1 \leq i<j \leq n)$,then for these $1 \leq i \leq n$, we have

$$
\frac{2}{k} \lambda_{i}\left(\sum_{1 \leq i<j \leq n} M_{i j}\right) \leq \lambda_{i}(H)
$$

Proof Take a unitary matrix ${ }_{U}=\frac{1}{\sqrt{k}}\left[\begin{array}{c}I \\ I \\ \vdots \\ I\end{array}\right]$, then U satisfied $U^{*} U=I_{n}$, noticed that $M_{i j}$ are all Hermitian matrices, for $(1 \leq i<j \leq n)$,so we have
$U^{*} H U=\frac{1}{k} \sum_{i=1}^{k} M_{i i}+\frac{2}{k} \sum_{1 \leq i<j \leq n} M_{i j}, \geq \frac{1}{k} \frac{2}{k-1} \sum_{1 \leq i i<j \leq n} M_{i j}+\frac{2}{k} \sum_{1 \leq i<j \leq n} M_{i j} \quad$ (from Theorem 2)

$$
=\frac{2}{k} \sum_{1 \leq i<j \leq n} M_{i j}\left(\frac{1}{k-1}+1\right) \geq \frac{2}{k} \sum_{1 \leq i<j \leq n} M_{i j} .
$$

Then for $1 \leq i \leq n$, from lemma 1.5 we have $\frac{2}{k} \lambda_{i}\left(\sum_{1 \leq i<j \leq n} M_{i j}\right) \leq \lambda_{i}\left(U^{*} H U\right) \leq \lambda_{i}(H)$, thus the conclusion $\frac{2}{k} \lambda_{i}\left(\sum_{1 \leq i<j \leq n} M_{i j}\right) \leq \lambda_{i}(H)$ is proved.

References

[1] Zübeyde Ulukök, More inequalities for positive semidefinite 2×2 block matrices and their blocks [J]. Linear Algebra and its Applications 572 (2019) 51-67
[2] X. Zhan, Matrix Inequalities, Lecture Notes in Math., vol. 1790, Springer-Verlag, Berlin, 2002.
[3] Y. Zhang, Eigenvalue majorization inequalities for positive semidefinite block matrices and their blocks, Linear Algebra Appl. 446 (2014) 216-223.
[4] F. Zhang, Matrix inequalities by means of block matrices, Mathematical Inequalities and Applications, Vol. 4, No. 4, (2001), 481-490.
[5] R. Türkmen and Z. Ulukök, Inequalities for singular values of positive semidefinite block matrices[J]. International Mathematical Forum, Vol. 6, 2011, no. 31, 1535 - 1545

Citation: Hui Quan (2019).The Inequalities of Positive Semi-Definite Block Matrix with Partial Order Relations. International Journal of Scientific and Innovative Mathematical Research (IJSIMR), 7(8), pp. 3-7. http://dx.doi.org/ 10.20431/2347-3142.0708002
Copyright: © 2019 Authors, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

