Note on the Vector Sub-Space $K(H)^{2}$ of Compact Operators on a H Hilbert's Infinite Dimension Separable Space

MASAMBA SALA VOKA Joseph ${ }^{*}$
Faculty of Science /Department of Mathematics and Computer Science / National Pedagogical University (UPN) Democratic Republic of Congo (DRC).
*Corresponding Author: MASAMBA SALA VOKA Joseph, Faculty of Science /Department of Mathematics and Computer Science / National Pedagogical University (UPN) Democratic Republic of Congo (DRC).

Abstract

Hilbert's space structures? Obviously, the vector space $K(H)$ of compact operators is candidate. The targeted vector spaces are noted $K(H)^{1}$ and $K(H)^{2}$. The following lines present the $(H)^{2}$ space.

Keywords: vector space, scalar products, norm, full norm, hilbertian basis, Cauchy-Schwarz inequality, compact operators, Banach 's space, Hilbert's space.

1. Prelimineries

1.1.Information

The vector space $\mathrm{B}(H)$ of operators limited on Hilbert's H infinite dimension separable space is Hilbert's space of which the scalar product and the full hermitian norm are respectively noted in this way:
$<A, B>_{1}=\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left(A_{e_{i}}, B_{e_{i}}\right)$ for ale $\mathrm{A}, \mathrm{B} \in B(H), e_{i} \in b$ and
$\|A\|_{1}=\left(\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left\|A e_{i}\right\|^{2}\right)^{1 / 2}$ for each $\mathrm{A} \in \mathrm{B}(H), e_{i} \in b, b$ being a hilbertian basis. Sometimes, we will note these results respectively by $<,>_{1}$ and $\left\|\|_{1}\right.$.
[Masamba Sala Voka Joseph]

2. Candidate $\boldsymbol{K}(\boldsymbol{H})$ Vector Space

As the question asked alludes to the existence of two compact vector spaces, we have found it appropriate to call and note them respectively $K(H)^{1}$ and $K(H)^{2}$. These notations do not add nor lessen the properties of a compact space $K(H)$; they inherit from all the properties due to a compact space noted $K(H)$. The following lines speak about the vector space $K(H)^{2}$.

3. RECALLS

3.1. Definition

Consider A an operation attached to a separable Hilbert's space H. It is said that A is a compact operator if it changes any limited part D of part H into a pre-compact part $A(D)$, whereas A is a finite rank dimension operator if its image $R(A)$ is finite.

3.2. Proposition

Consider H a separable Hilbert's space and $\left(A_{n}\right)$ a succession of compact operators which converge towards a linear operator A, then a compact operator.

3.3. Proposition

Consider H a separable Hilbert's space and A a compact operator; then there exists a succession $\left(A_{n}\right)$ of finite rank operators such as $\lim _{n \rightarrow \infty} A_{n}=\mathrm{A}$ [Dieudonné]

Note on the Vector Sub-Space $\llbracket K(H) \rrbracket \wedge 2$ of Compact Operators on a H Hilbert's Infinite Dimension Separable Space

4. Note

As $K(H)^{2}$ is a closed vector sub-space of $\mathbf{B}(H)$, it benefits from properties of Hilbert's space $\mathbf{B}(H)$ such as :

- The closed unity bowl is noted $B_{H}=x \in H:\|x\| \leq 1$
- The following proposition : for a compact operator A and a vector $\mathrm{x} \in B_{H}$ we have the inequality: $\|A x\|^{2} \leq\left(\sum_{i=1}^{\infty}\left|a_{i}\right|\left\|A e_{i}\right\|\right)^{2}$
- The field of definition of a compact operator A is dense in H and for all the two compact operators $\mathrm{A}, \mathrm{B} \in K(H)^{2}$ and $e \in \mathrm{~b}$, the scalar $\left(\mathrm{Ae}_{\mathrm{i}}, \mathrm{Be}_{\mathrm{i}}\right)$ is an element of \mathbb{C}.

5. REMARK

$K(H)^{2}$ is a vector sub-space of $\mathrm{B}(H)$ so that the field of the definition of compact operators including those that are the terms of a succession $\left(A_{n}\right)$ of finite rank operators, are denses in H.
Thus, whatever an operator A and a term A_{n} of a succession $\left(A_{n}\right)$ of finite rank operators such

Now consider A and B two compact operators such as $\lim _{n \rightarrow \infty} A_{n}=A, \lim _{n \rightarrow \infty} B_{n}=B$ and a vector $e_{i} \in b$. It is clear that $A_{n} e_{i}$ and $B_{n} e_{i}$ are vectors of H since A_{n} and B_{n} are operators on H . it follows that $\left(A_{n} e_{i}, B_{n} e_{i}\right)$ is a scalar.

For this particular case of compact operators, we will use in the serial, the terms of two successions of finite rank operators $\left(A_{n}\right)$ and $\left(B_{n}\right)$ such as $\lim _{n \rightarrow} A_{n}=A$ and $\lim _{n \rightarrow} B_{n}=B$ whatever two compact operators A and B.

Concretely, if for A and B we take respectively A_{n} and B_{n}, then the number $<A, B>_{1}=$ $\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left(A e_{i}, B e_{i}\right)$ takes the following form : $<A, B>_{2}=\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left(A_{n} e_{i}, B_{n} e_{i}\right)$ for all the two operators A, B on H and $e_{i} \in b, \mathrm{~b}$ being a Hilbertian basis. It is wise to be sure that this formula does not depend on the choice of finite rank operators $\left(A_{n}\right)$ and $\left(B_{n}\right)$ such as : $\lim _{n \rightarrow \infty} A_{n}=A$ and $\lim _{n \rightarrow \infty} B_{n}=B$.
In fact, if $\left(P_{n}\right)$ and $\left(Q_{n}\right)$ are two other successions of finite rank operators such as $\lim _{n \rightarrow \infty} P_{n}=A$ and $\lim _{n \rightarrow \infty} Q_{n}=Q$, it is clear that if $\lim _{n \rightarrow \infty} P_{n}=A$ and $\lim _{n \rightarrow \infty} Q_{n}=B$, then it must absolutely get the following equalities:
$A=P$ and $B=Q$. These equalities are true since the limit of a succession is unique; they involve the equalitie $<A, B>=<P, Q>$ that clearly means that: $\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left(A_{n} e_{i}, B_{n} e_{i}\right)=\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left(P_{n} e_{i}, Q_{n} e_{i}\right)$.

We have found it appropriate to name this scalar product in this way : $\left\langle A, B>_{2}=\sum_{n=1}^{\infty} \frac{1}{2^{n}}\right.$ $\left(A_{n} e_{i}, B_{n} e_{i}\right)$ for all two compact operators A, B and $e_{i} \in b$; sometimes, we note it simply : $<,>_{2}$.

6. Structures Conferred to a Compact Vector Space $\boldsymbol{K}(\boldsymbol{H})^{2}$

6.1.Theorem

Consider $K(H)^{2}$ Hilbert's infinite dimension separable complex spaces, A and B two compact operators such as $\mathrm{A}=\lim _{n \rightarrow} A_{n}, B=\lim _{n \rightarrow \infty} B_{n}, e_{i} \in b$, and the following application : <, > $>_{2}:\left(K(H)^{2}\right)^{2} \rightarrow \mathbb{C}$ such as $<A, B>_{2}=\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left(A e_{i}, B e_{i}\right)$ for $\mathrm{A}, \mathrm{B} \in K(H)^{2}$ and $e_{i} \in b$; then $<,>_{2}$ is a scalar product on $\mathrm{K}(H)^{2}$.

Proof

(i) Whatever three compact operators $\mathrm{A}, \mathrm{B}, \mathrm{C} \in K(H)$ and $e_{i} \in b$:

$$
\begin{aligned}
\left(i_{1}\right)<A+B, C>_{2} & = \\
& =\sum_{n=1}^{\infty} \frac{1}{2^{n}}\left(A_{n} e_{i}, C_{n} e_{i}\right)+\sum_{n=1}^{\infty} \frac{1}{2^{n}}\left(B e_{i}, C_{n} e_{i}\right)
\end{aligned}
$$

Note on the Vector Sub-Space $\llbracket K(H) \rrbracket \wedge 2$ of Compact Operators on a H Hilbert's Infinite Dimension Separable Space

$$
\begin{aligned}
& =<A, C>_{2}+<B, C>_{2} \\
\left(i_{2}\right)<A, B+C>_{2} & = \\
& =\sum_{n=1}^{\infty} \frac{1}{2^{n}}\left(A_{n} e_{i}, B_{n} e_{i}\right)+\sum_{n=1}^{\infty} \frac{1}{2^{n}}\left(A_{n} e_{i}, C_{n} e_{i}\right) \\
& =<A, B>_{2}+<A, C>_{2}
\end{aligned}
$$

(ii) Whatever two compact operators A, B, a scalar t and $e_{i} \in b$:

$$
\begin{aligned}
\left(i i_{1}\right)<t A, B>_{2}= & \\
& =\sum_{n=1}^{\infty} \frac{1}{2^{n}}\left(\left(t A_{n}\right) e_{i}, B_{n} e_{i}\right)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} t\left(A_{n} e_{i}, B_{n} e_{i}\right) \\
& =t \sum_{n=1}^{\infty} \frac{1}{2^{n}}\left(A_{n} e_{i}, B_{n} e_{i}\right)=t<A, B>_{2} \\
\left(i i_{2}\right)<A, t B>_{2} & = \\
& =\sum_{n=1}^{\infty} \frac{1}{2^{n}}\left(A_{n} e_{i},\left(t B_{n}\right) e_{i}\right)=\sum_{n=1}^{\infty} \frac{1}{2^{n}}\left(A_{n} e_{i}, t B_{n} e_{i}\right) \\
& =\vec{t} \sum_{n=1}^{\infty} \frac{1}{2^{n}}\left(A_{n} e_{i}, B_{n} e_{i}\right)=\vec{t}<A, B>_{2}
\end{aligned}
$$

(iii) Whatever two compact operators A, B and $e_{i} \in b$:

$$
\begin{aligned}
<A, B>_{2} & = \\
& =\sum_{n=1}^{\infty} \frac{1}{2^{n}}\left(A_{n} e_{i}, B_{n} e_{i}\right)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \overline{\left(B_{n} e_{l}, A_{n} e_{l}\right)}
\end{aligned}
$$

(iv) Whatever a compact operator A and $e_{i} \in b$:
$<A, A>_{2}=\sum_{n=1}^{\infty} \frac{1}{2^{n}}\left\|A_{n} e_{i}\right\|^{2}>0$; it follows that $\left\|A_{n} e_{i}\right\|^{2}>0$ for any $e_{i} \in b$. the equality
$<A, A>_{2}=0$ means that we have $<A, A>_{2}=\sum_{n=1}^{\infty} \frac{1}{2^{n}}\left(A_{n} e_{i}, B_{n} e_{i}\right)=\sum_{n=1}^{\infty} \frac{1}{2^{n}}\left\|A_{n} e_{i}\right\|^{2}=0$ whatever $e_{i} \in b$ or simply $A=0_{H}$.
The norm associated with the scalar productions is therefore noted : $\|A\|_{2}=\left(\sum_{n=1}^{\infty} \frac{1}{2^{n}}\left\|A_{n} e_{i}\right\|^{2}\right)^{1 / 2}$ for any compact operator A and $e_{i} \in b$.

7. REMARK

Consider the two norms \|\| $\|_{2}$ and \| $\|_{1}$ on $K(H)^{2}$; in this work, the word 'norm" means a structure of general topology or functional analysis on the one hand, on the other hand in arithmetic's, a real number on the other hand: for instance: $\left\|\left\|_{1} \leq\right\|\right\|_{2}$ and $\left\|\left\|_{2} \leq\right\|\right\|_{1}$ which means that : $\left\|\left\|_{1}=\right\|\right\|_{2}$.
These elements, the proposition (2) of (4 Note) and the comparison of norms have helped enough us to get the desired results:
8. COMPARISON OF NORMS \| $\|_{1}$ and \| $\|_{2}$

8.1.Theorem

Consider H a separable Hilbert's space on k and $\left\|\|_{1}\right.$ and $\| \|_{2}$ the two norms on the compact vector space $K(H)^{2}$, then we have : \| $\left\|_{1} \leq\right\| \quad \|_{2}$.

Proof

In fact, for any compact operator A and a vector x of H belonging to B_{H}, we have the following equalities and inequalities:
$\|A x\|^{2} \leq\left(\sum_{i=1}^{\infty}\left|a_{i}\right|\left\|A e_{i}\right\|\right)^{2}$
[Porposition (2) the 4.note]

$$
\leq\left(\sum_{i=1}^{\infty}\left|a_{i}\right|\left\|A e_{i}\right\|_{2}\right)^{2}=\left(\sum_{i=1}^{\infty}\left|a_{i}\right|\|A\|_{2}\left\|e_{i}\right\|\right)^{2}
$$

Note on the Vector Sub-Space $\llbracket K(H) \rrbracket \wedge 2$ of Compact Operators on a H Hilbert's Infinite Dimension Separable Space

$$
\begin{aligned}
& {\left[\text { since }\|A\|_{2}=\sup \left\{\left\|A e_{i}\right\|: i=1,2,3, \ldots\right\}\right]} \\
& =\sum_{i=1}^{\infty}\left|a_{i}\right|^{2}\|A\|_{2}^{2}=\|A\|_{2}^{2} \\
& \text { [since } \left.\sum_{i=1}^{\infty}\left|a_{i}\right|^{2}=1=\left\|e_{i}\right\|^{2}\right] \\
& \text { Brief : } \\
& \|A x\|^{2} \leq\|A\|_{2}^{2} \text { or simply }\|A x\| \leq\|A\|_{2} ; \text { it follows that the norm } \\
& \|A\|_{1}=\sup \{\|A x\|:\|x\| \leq 1\} \leq\|A\|_{2} \text { or simply the result: } \\
& \|A\|_{1} \leq\|A\|_{2} \cdot \square
\end{aligned}
$$

8.2. Theorem

Consider H a separable Hilbert's space on \mathbb{K} and $\left\|\|_{1}\right.$ and $\| \quad \|_{2}$ the two numbers on the vector space $K(H)^{2}$: then, we have : \| $\left\|_{2} \leq\right\| \|_{1}$.

Proof

Il is easy to note that if A is a compact operator and x a vector of H belonging to B_{H}, we have the following inequalities and equalities:

$$
\begin{array}{ll}
\|A\|_{2}^{2}=\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left(A e_{i}, A e_{i}\right) & \text { [by definition of }\left\|\|_{2}\right] \\
\leq \sum_{i) 1} \frac{1}{2^{i}}\left|\left(A e_{i}, A e_{i}\right)\right| \leq \sum_{i=1}^{\infty} \frac{1}{2^{i}}\left\|A e_{i}\right\| A e_{i}\| \| \\
& \text { [Cauchy - Schwarz's inequality] } \\
=\sum_{i) 1}^{\infty} \frac{1}{2^{i}}\left(\left\|A e_{i}\right\|\right)^{2} \leq \sum_{i=1}^{\infty} \frac{1}{2^{i}}\left\|A e_{i}\right\|_{1}^{2} &
\end{array}
$$

$$
\left[\text { since }\|A\|_{1}=\sup \left\{\left\|A e_{i}\right\|: e_{i} \in b\right\}\right]
$$

$$
=\|A\|_{1}^{2}\left\|e_{i}\right\|^{2} \sum_{i=1}^{\infty} \frac{1}{2^{i}}
$$

$$
=\|A\|_{1}^{2} \quad\left[\text { since } \sum_{i=1}^{\infty} \frac{1}{2^{i}}=1=\left\|e_{i}\right\|^{2}\right]
$$

finally $\|A\|_{2}^{2} \leq\|A\|_{1}^{2}$ or simply $\|A\|_{2} \leq\|A\|_{1}$.

9. Conclusion

9.1. Remark

According as we consider a norm a numerical number, a topological structure, a functional analysis structure and, given results got, we present the conclusion in these words:

9.2. Theorem

The inequalities $\|\quad\|_{1} \leq\| \|_{2}$ and $\|\quad\|_{2} \leq\|\quad\|_{1}$ mean that the two numbers \| $\|_{1}$ and $\left\|\|_{2}\right.$ are equal or simply : \| $\left\|_{1}=\right\| \quad \|_{2}$.

9.3.Theorem

The two norms \| $\|_{1}$ and $\left\|\|_{2}\right.$ are hermitian and full; the vector space $K(H)^{2}$ provided with the norm $\left\|\|_{2} \text { is a Banach's space and, also the vector space } K(H)^{2} \text { provided with the norm \| }\right\|_{2}$ is a Banach's space.

9.4. Theorem

The two norms \| $\|_{1}$ and $\left\|\|_{2}\right.$ are hermitian and full; the vector space $K(H)^{2}$ provided with the norm \| $\|_{2}$ is a Hilber's space and, also the vector space $K(H)^{2}$ provided with the norm \| $\|_{2}$ is a Hilbert's space.

Note on the Vector Sub-Space $\llbracket K(H) \rrbracket \wedge 2$ of Compact Operators on a H Hilbert's Infinite Dimension Separable Space

ACKNOWLEDGEMENT

1. To Professor NTANTU IBULA Donatien, the Director of my Doctorate Thesis for his generosity and his availability
2. To Senior Lecturer MAYALA LEMBA Francis, a computer man, for the form and the materialization of this work.

References

[1] Dieudonné, J., Elément d'analyse moderne, Gautier Villars, Paris, 1974.
[2] Schwants U., Analyse hilbertienne, Hermann H, Paris, 1979.
[3] Masamba Sala Voka J., International Journal of Sientific and Innovative Mathematical Research (IJSIMR). Volume 4, Issue 7, June 2016, pp 7-11.

AUTHOR'S BIOGRAPHY

MASAMBA SALA VOKA, is an Associated Professor at National Pedagogical University, Kinshasa (DRC) He teaches: Infinitesimal Analysis, Functional Analysis, General Topology. He studied at National Pedagogical University.

Citation: MASAMBA SALA VOKA., (2019). Note on the Vector Sub-Space $\llbracket K(H) \rrbracket \wedge 2$ of Compact Operators on a H Hilbert's Infinite Dimension Separable Space. International Journal of Scientific and Innovative Mathematical Research (IJSIMR), 7(6), pp.12-16. http://dx.doi.org/10.20431/2347-3142.0706002
Copyright: © 2019 Authors, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

