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1. INTRODUCTION 

Finding root of non-linear equation f(x) =0, is a classical problem in numerical analysis which arise in 

many scientific and engineering fields [1]. Newton’s method is the most well-known method for solving 

nonlinear equations. Various numerical methods have been developed using different techniques 

including finite differences [1-4],  quadrature rules ,QiaolingXue, JianZhu [5], Nenad Ujevic 2006[6], 

Taylor’s series, decomposition methods, homotopy techniques, Newton theorem (Nasr Al Din IDE, 

2013), (Shijun Liao., 1997[7]) etc., in order to carry out the solution of non-linear equations with 

different convergence rates. Most commonly used numerical methods for root location of non-linear 

equations includes, Bisection/interval halving method, Regula-falsi/false position method. 

Nonlinear Regression Method and several another methods see for example [2-30].Here we describe a 

new method by using least square method as a polynomial form of degree five. 

The goal: is identify the coefficients ai’s such that f(x) fits the data well: 

f(x) =0                                                                                                                                                                                       (1) 

where, f denotes a continuously differentiable function on [a, b]∁ℛ , and has at least one root α, in [a, 

b] Such as Newton’s Method, Bisection method, Regula Falsi method, Nonlinear Regression Method 

and several another methods see for example [10-30]. Here we describe a new method by using Least 

square method as a polynomial form a second degree and more than two (third, fourth and fifth 

degrees(PM)), then we find that, this procedure lead us to the root α of equation (1). Some test examples 

given to show the efficiency of the proposed methods and compared the results of these examples of 

present methods.  The comparison with the famous methods of classical Newton’s method (NM) [12] , 

Nasr Al Din IDE [2], Hou [19], New Eighth higher and Sixteenth-order iterative methods given by 

Rafiullah (R1)[9], the numerical results obtained show that the present method is faster than the other 

methods. 

2. PROPOSED METHOD 

In the first, we fitted a polynomial function by estimating the parameters using the least squares method 

to eliminate complex nonlinear functions to arrive at a solution for nonlinear equations. The general 

problem of fitting the best least squares line to a collection of data (xi,yi) minimizing the total error. 
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3. ALGORITHM 

The present method has 6 steps:  

• Take [𝑎, 𝑏] is an initial interval, which has at least a root in this interval.  

• Compute ((x1), f (x1)), ((X2), f (X2)) , ((X3), f(X3),), ((X4), f(X4),), ((X5), f(X5)), and solve the 

equation of the fifth degree 

𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥2
𝑖 + 𝑎3𝑥3

𝑖 + 𝑎4𝑥4
𝑖 + 𝑎5𝑥5

𝑖 = 0                                                                               (2)       

 for determine the roots of (1) ,x= x1 , x= X2, x= x3  , x= x4 , x= x5. 

• Determine the constants a0, a1, a2, a3, a4 and a5 by solving the system of five linear algebraic 

equations using least square method .  

• Find iteration (𝑋𝑛+1) from 

𝑋𝑛+1 = 𝑣𝑛 −
𝑓( 𝑣𝑛)

�́�(𝑣𝑛)
                                                                                                                                 (3) 

• Return to step (2) until the absolute error (𝑥) < 𝜀. 

4. NUMERICAL TESTING 

In the first we fitted  a polynomial function by estimating the parameters using the least squares method 

to eliminate complex nonlinear functions to arrive at a solution for nonlinear equations, By using maple 

, and test the effectiveness of the proposed method and compare it with other methods: 

We start with quadratic equation, then we find that, this procedure lead us to the root α of equation (1) 

, let ei  is the error or the different value between the true value yi  and the estimated value �̂� ,therefore. 

ei =  yi - �̂�i                                                                                                                                                      (4) 

and the sum of  square error for second ,Third , fourth and fifth degrees: 

∑ 𝑒𝑖
25

𝑖=1  = ∑ (𝑦𝑖 − �̂�𝑖)25
𝑖=1                                                                                                                                                                         (5) 

∑ 𝑒𝑖
22

𝑖=1  = ∑ (𝑦𝑖 − (𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥2
𝑖))22

𝑖=1                                                                                              (6) 

∑ 𝑒𝑖
23

𝑖=1  = ∑ (𝑦𝑖 − (𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥2
𝑖 + 𝑎3𝑥3

𝑖))23
𝑖=1                                                                               (7) 

∑ 𝑒𝑖
24

𝑖=1 =∑ (𝑦𝑖 − (𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥2
𝑖 + 𝑎3𝑥3

𝑖 + 𝑎4𝑥4
𝑖))24

𝑖=1                                                               (8) 

or∑ 𝑒𝑖
25

𝑖=1 =∑ (𝑦𝑖 − (𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥2
𝑖 + 𝑎3𝑥3

𝑖 + 𝑎4𝑥4
𝑖 + 𝑎5𝑥5

𝑖))25
𝑖=1  (9) 

To find  a0 , a1 , a2, a3, a4 and a5 , we will minimize this function , taking the derivative of ( 5,6,7,8,9) 

equal to zero, we find the three normal equations for second degree: 
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Then, find fitted the parameters of cubic polynomial, fourth polynomial and fifth polynomial (PM). 

5. NUMERICAL EXAMPLES 

Consider the following examples to check the effectiveness of the least square estimation of the  

polynomial higher degrees .First we compare the present method with the method of (PM1) Nasr Al 

Din IDE [2], Rafiullah.M [9],the classical Newton’s method [12]and Hou[13] and Hou[15]. 

The initial interval [1,2] 

Example1: 

Consider the equation: 

Table1. Show numerical results obtained the (PM) 

 

Comparing the results of this research with the results of previous methods of previous studies method 

PM1 [2] IDE Nasr-Al-Din, and the method of R1 exist in the research , where we observe a similarity in 

the result for the first function of the second class where the number of iterations 2 and better than 

Newton's classical method. 

functions Methods

No.of 

iterati

on x0 xn f(xn)

least square for polyonomial with 2nd degreee 2 1 5.4871E-08 0

least square  for poly  with 3rd degree 2 1 2.3743E-05 0

4th degree 2 1 -0.0017174 0

fifth degree 2 1 -0.0074584 0

least square for polyonomial with 2nd degreee 5 2 1.09427405 0.3833

least square  for poly  with 3rd degree 5 2 1.00713458 0

4th degree 5 2 1.04377126 -1E-07

fifth degree 5 2 1.00143 0.0005

least square for polyonomial with 2nd degreee 2 1 0.36751045 0

least square  for poly  with 3rd degree 4 1 0.27049737 2E-08

4th degree 2 1 0.18219121 -2E-11

fifth degree 3 1 0.28094432 3E-09

least square for polyonomial with 2nd degreee 5 1.5 0.9747202 4E-06

least square  for poly  with 3rd degree 4 1.5 0.99998227 3E-06

4th degree 4 1.5 0.99999969 3E-06

fifth degree 4 1.5 1.00000042 3E-06

least square for polyonomial with 2nd degreee 3 1.5 0.25922091 0

least square  for poly  with 3rd degree 2 1.5 0.43400233 -1E-10

4th degree 2 1.5 0.45934153 -3E-09

fifth degree 2 1.5 0.42640183 -1E-10

least square for polyonomial with 2nd degreee 1 1 0.00002104 0

least square  for poly  with 3rd degree 2 1 0.00000997 0

4th degree 2 1 0.00042496 0

fifth degree 2 1 0.16973787 -1E-10

the 

stopping 

criterion 

is not 

met

f1(x) = sin(x)
2

 + x    



Using the Least Squares Method with Five Points to Solve Algebraic Equations Nonlinear  

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                       Page | 29 

Table2. The numerical results to compare the present method (PM) with another methods 

second degree 

 

function PM PM1 NM R1 HOU Compare 

𝑓1(𝑥) = 𝑠𝑖𝑛(𝑥)2  + 𝑥 

 2 2 7 2 2 same 

 5 2 9 3 2 bad 

 2 9 9 13 3  best 

 5 2 7 2 2 bad 

 3 2 8 2 2 bad 

 1 2 6 3 slow best 

The comparison table( 2 ) for the numerical examples of  the functions between the method 

proposed(PM) with the methods used [2] Nasr Al Din IDE ,We compare (PM) with the method Nasr Al 

Din IDE [2], M. Rafiullah (R1) [9] with the classical Newton’s method (NM) [12] ,Hou [19] which are 

eighth, second, twelfth and ninth order methods respectively.  With the same function, numbering shows 

that the number of iterative to reach the roots was better for the proposed method for the fourth and 

eighth functions. The similarity in the result was in the first function, but the third, fifth and sixth results 

were bad at the second-degree case.  

6. CONCLUSION 

In this work, we have compared the result with Nasr Al Din IDE [2] (2018) results, note that there are 

no differences from the second degree of the same functions used in the research. Therefore, we observe 

convergence in the results of the second degree of the first, second, third , fourth, fifth and sixth, and 

eight functions from table(1), and we notice the number of iterative to reach the roots was better for the 

proposed method for the fourth and eighth functions from table(2)  
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