Hodge's Conjecture Clay Institute Millenium Problem Solution

PAUL T E CUSACK*
Independent Researcher, BSc E, DULE, 1641 Sandy Point Rd, Saint John, NB, Canada E2K 5E8, Canada
*Corresponding Author: PAUL T E CUSACK, Independent Researcher, BSc E, DULE, 1641 Sandy Point Rd, Saint John, NB, Canada E2K 5E8, Canada

Abstract

Here is a paper that provides a proof for the Hodges Conjecture that all solutions to the complex Manifold are linear. A simple way to understand this is the Ln function.

1. Introduction

Statement of the Hodge Conjecture

Let
$\operatorname{Hdg}^{k}(X)=H^{2 k}(X, \mathbf{Q}) \cap H^{k, k}(X)$.
We call this the group of Hodge classes of degree $2 k$ on X.
The modern statement of the Hodge conjecture is:
Hodge conjecture. Let X be a non-singular complex projective manifold. Then every Hodge class on X is a linear combination with rational coefficients of the cohomology classes of complex subvarieties of X.
A projective complex manifold is a complex manifold which can be embedded in complex projective space. Because projective space carries a Kähler metric, the Fubini-Study metric, such a manifold is always a Kähler manifold. By Chow's theorem, a projective complex manifold is also a smooth projective algebraic variety, that is, it is the zero set of a collection of homogeneous polynomials.

2. Modelling the Complex Manifold

ILLUSTRATION 1 RAILROAD TRACKS

Two parallel lines when viewed from above are 0 degrees difference in slope. When the same lines are viewed in perspective, the angle between them is less than 90 degrees ($\mathrm{Pi} / 2$). These appear to go to infinity whereas we know they don't. From the illustration on the right. This phenome can be modelled by a box within a circle. In fact, this circle is just one particular case, but the analogy can be used to model any vector space that is complete.

ILLUSTRATION 2 CIRCLE PROPERTIES
We know from simple trigonometry that,
Sin theta $=y / R \quad y=R$ sin theta
Cos theta $\mathrm{x} / \mathrm{R} \quad \mathrm{x}=\mathrm{R} \cos$ theta
The equation of a circle is, $x^{\wedge} 2+y^{\wedge} 2=r^{\wedge} 2$
Inserting,
$\mathrm{R}^{\wedge} 2 * \cos ^{\wedge} 2$ theta $+\mathrm{R}^{\wedge} 2 \sin \wedge 2$ theta $=\mathrm{R}^{\wedge} 2$
Let $\mathrm{R}=1$ (arbitrary)
$\operatorname{Cos}^{\wedge} 2$ theta $+=\sin ^{\wedge} 2$ theta $=1$
Cos theta $+\sin$ theta $=$ sqrt $1=+/-1$
Cos dtheta/dt=sin dtheta/dt=+/-1
W=dtheta/dt n
Cos $\mathrm{w}+\sin \mathrm{w}=1$
Now Area of a circle $=\operatorname{Pi} \mathrm{R}^{\wedge} 2=\mathrm{Pi}(1)^{\wedge} 2=\mathrm{Pi}$
Cos $\mathrm{w}+\sin \mathrm{w}=\mathrm{R}^{\wedge} 2$
Cos $\mathrm{w}+\sin \mathrm{w}=\mathrm{A} / \mathrm{Pi}$
Consider the Area of the square x by y
A $s q=x y$
Asq' $=(x y)^{\prime}$
$=\{$ Rsin theta $)($ Rcos theta $)$,
$=R^{\wedge} 2 \sin$ theta \cos theta]
$=2 R(-\cos$ theta \sin theta $]$
Integral Asq' $=\mathrm{A}-2 \mathrm{R}^{\wedge} 2 / 2 \sin$ theta $(-\cos$ theta)
Set Asq=0
$0=R^{\wedge} 2 \sin$ heta cos theta
Sin theat $=0 \quad$ or \cos theta $=0$
Theta $=\{0,90,180,270,360\}$
Cos $\mathrm{w}+\sin \mathrm{w}=\mathrm{A} / \mathrm{t}$
Integral $w=$ Integral dTheta/dt
$W^{\wedge} 2 / 2=$ theta
$\operatorname{Cos}\left(w^{\wedge} 2 / 2\right)+\sin \left(w^{\wedge} 2 / 2\right)=\mathrm{A} / \mathrm{Pi}=0 / \mathrm{Pi}=0$
$\mathrm{W}^{\wedge} 2 / 2=\{0,90,180,270,360\}$
$\mathrm{W}=\{0, \mathrm{Pi}$, sqrt $\mathrm{Pi}, \operatorname{sqrt}(2 \mathrm{Pi})$, sqrt $3 \mathrm{Pi} / 2)\}$
$W=\{0,1.7725,2.5066,2.1708\}$ rads
Substituting each of these in to the above equation:
$\mathrm{X} \cos \mathrm{w}+\sin \mathrm{w}=0$
$\operatorname{Cos} 0+\sin 0($ not $=) 0$
$\operatorname{Cos}($ sqrt Pi) $)+\sin ($ sqrt Pi) $($ not $=0$
$\operatorname{Cos}(\operatorname{sqrt}(2 \mathrm{Pi})+\sin (\operatorname{sqrt}(2 \mathrm{Pi})($ not $=) 0$
$\operatorname{Cos}(3 \mathrm{Pi} / 2)+\sin (\operatorname{sqrt} 3 \mathrm{Pi} / 2)=($ not $=) 0$
All these conditions fail.
Now, the Area of the square $=x y$
Asq=xy
Asq=[Rsin theta][Rcos theta]
$=A r e a / R=P i R$
Let $\mathrm{R}=1$
$\mathrm{Pi}=\sin$ theta $* \cos$ theta

Derivative:

$\mathrm{C} 1=(\cos$ theta)(-in theta)
$\mathrm{C} 1=-\mathrm{Pi}$

Derivative:

C2 $=(-\sin$ theta $)(-\cos$ theta)
$\mathrm{C} 2=\sin$ theta \cos theta
$-\mathrm{c} 1=\mathrm{c} 2=-\mathrm{Pi}$
$\mathrm{C} 1=\mathrm{Pi}$
$\mathrm{C} 2=-\mathrm{Pi}$
$-\mathrm{c} 1=\sin$ theta \cos theta
$\mathrm{C} 2=\sin$ theta cos theta
$-\mathrm{C} 1==\mathrm{C} 2$
$-\mathrm{Pi}=-\mathrm{Pi}$
True!
Asq=xy
$0=$ Rsin theta cos theta
Sin theta=0
Theta=0, Pi, 2Pi
Cos theta=0
Theta $=\mathrm{Pi} / 2,3 \mathrm{Pi} / 2$
Theta $=\{0, \mathrm{Pi} / 2, \mathrm{Pi}, 3 \mathrm{Pi} / 2,2 \mathrm{Pi}\}$
Theta $=\{) \mathrm{Pi} / 2,1 \mathrm{Pi} / 2,2 \mathrm{Pi} / 2,3 \mathrm{Pi} / 2,4 \mathrm{Pi} / 2\}$
Theta=nPi/2
$\mathrm{n}=0,1,2,3,4 \rightarrow$ Asq=0 (Linear Set $\}$
International Journal of Scientific and Innovative Mathematical Research (IJSIMR)
3. Two Parallel Vectors such Rail Road Tracks have a difference between their Direction of Zero.

ILLUSTRATION 3 LINEAR SET n AND THE DERIVATIVE
Asq' $=0=\mathrm{Cl}$
Asq=xy
Asq=Rsin theta cos theta
Asq ${ }^{\prime}=\mathrm{C} 1=\left[\mathrm{R}^{\wedge} 2 \sin \text { theta cos theta }\right\}^{\prime}$
$-2 R(\cos$ theta sin theta
$0=C 1=-2 R \cos$ theta sin theta
Derivative:
$0=\cos$ theta \sin theta
Cos theta $=0$
Sin theta-=0
Theta $=\{n P i / 2) n==? 0,1,2,3,4$ (Linear zSet$)$
Linear Set=[Linear Set $\}^{\prime}$
nPi/2=L.S.
$n P i / 2=0$
$\mathrm{n}=0$
$\mathrm{n}=\{$ Null Set $\}$
Arsq=xy
$=R \sin$ theta $\cos R \cos$ theta
Sin $0 \cos 0=$
$=(01)(1)$
$=0$
Asq=0
So if the derivative and Integral of the Linear Set are equal:
$Y=y$ '
Integral $\mathrm{y}=\mathrm{y}$ '
$Y^{\wedge} 2 / 2=y$
$Y^{\wedge} 2 / 2-y=0$
$\mathrm{Y}(\mathrm{y}-2)=0$
$\mathrm{Y}=0, \mathrm{y}=2$
$Y=y^{\prime}=y^{\prime \prime}$,
Asq $=\mathrm{e}^{\wedge} \mathrm{x}$
$Y=2=e^{\wedge} x$
$Y=\operatorname{Ln} 2=x$
$\mathrm{X}=0.6931$
$\mathrm{Y}=\mathrm{x}$
$\mathrm{Y}=\mathrm{mx}+\mathrm{b}$
$\mathrm{Y}=(1) \mathrm{x}=0$
$\mathrm{Y}=\mathrm{x}$ (Linear)
$Y=e^{\wedge} x$
$\mathrm{Y}^{\prime}=\mathrm{e}^{\wedge} \mathrm{x}=0$
X=-Infinity
TWO PARELL VECTOR CAN HAVE APPEAR TO JOIN AT INFINITY.
Now,
$\operatorname{Ln}(0)=1 / .0$
$\mathrm{E}^{\wedge}(\operatorname{Ln} 0)=0=\mathrm{e}^{\wedge} 196$
$0=1.3235 x$ 10^85
$1 / \mathrm{x}=196$ (Infinity)
$\mathrm{X}=1 / 196=0.005102$
$\mathrm{x} / \mathrm{Pi}=0.05102=1624 \sim 1618=$ Golden Mean
$\mathrm{x}=1.618 \mathrm{Pi}$
$0.618 \mathrm{x}=\mathrm{x} / 1.618=\mathrm{Pi}$
Sqrt $(-1) \mathrm{x}=\mathrm{Pi}$
Sqrt(-1)(0)=Pi
$0=\mathrm{Pi} / 4$
Golden Mean
$\mathrm{X}^{\wedge} 2-\mathrm{x}-1=0$
$\mathrm{X}=1.618,0.618$
$\mathrm{X}^{\wedge} 2-\mathrm{x}-1=0$
(Ln 0)^2-Ln o-1=0
Uinfinity^2-Infinity-1=0
Derivative $=$ slope $=\mathrm{m}=$ LINEAR RELATIONSHIP BETWEEN x and y
$2 *$ Infinity- $1-1=0$
$2 *$ Inifinity $=2$ Infinity $=1$
$\operatorname{Ln}(0)=\mathrm{Ln}(\mathrm{Pi} / \mathrm{sqrt}(-1)=1.626 \rightarrow 1.618$
Ln (0)=-Infinity=1
So the difference in the parallel railroad tracks is 0 , When the angle is <90 they appear Infinite. And the solution to is linear.
4. GOLDEN MEAN EQUATION: where the Multiple Meets the Fraction I.E., at the NUMBER 1
$X^{\wedge} 2-x-1=n^{\wedge} 2 / 2$
THE RATE OF CHANGE OF THE APPROACH TO 1 IOF THE GOLDEN MEAN FUNCTION IS THE DERIVATIVE. SET THE DERIVATIVE =n OR THE LINEAR SET.

Derivative
$2 \mathrm{x}-1=\mathrm{n}$
$2 \mathrm{x}-1=0$
$X=1 / 2$
$2 \mathrm{x}-1=1$
$\mathrm{X}=1$
$2 \mathrm{x}-1=2$
$X=3 / 2$
$2 \mathrm{x}-1=3$
$X=4 / 2=2$
Area of a circle $=\mathrm{PiR}^{\wedge} 2$
$\mathrm{R}=1$
Area=Pi
Pi* $0=0$
Pi* $1 / 2=\mathrm{Pi} / 2$
Pi* $1=\mathrm{Pi}$
$\mathrm{Pi} * 3 / 2=3 \mathrm{Pi} / 2$
Pi* 2
$=2 \mathrm{Pi}$
Derivative of Golden Mean $=\{0, \mathrm{Pi} / 2, \mathrm{Pi}, 3 \mathrm{Pi} / 2,2 \mathrm{Pi}\}$
$=$ Theta for $\mathrm{n} \rightarrow 0,1,2,3,4$
5. Ln Function

ILLUSTRATION 4 LN FUNCTION

The universal function is when $y=y^{\prime}=y^{\prime}$ '. So, since we are sitting at 1 , the solution is linear when the angle between the two vectors is zero. We move toward 0 , the angle between the two vectors goes to infinity.

6. CONCLUSION

So, this proves that the solution is linear and infinite at the same time. The diagonal of every box has a \sin and a cosine component. So, this proves that every box has the same solution: Linear and Infinite and zero at the same time.

References

[1] ASTROTHEOLOGY THE MISSING LINK BLOG, CUSACK'S UNIVERSE, BY AUTHOR

Citation: PAUL T E CUSACK, (2019). Hodge's Conjecture Clay Institute Millenium Problem Solution. International Journal of Scientific and Innovative Mathematical Research (IJSIMR), 7(12), pp. 24-30. http://dx.doi.org/ 10.20431/2347-3142.0712005

Copyright: © 2019 Authors, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

