P vs. Np Clay Institute Millenum Problem Solution

PAUL T E CUSACK*
Independent Researcher, BSc E, DULE, 1641 Sandy Point Rd, Saint John, NB, Canada E2K 5E8, Canada

*Corresponding Author: PAUL T E CUSACK, Independent Researcher, BSc E, DULE, 1641 Sandy Point Rd, Saint John, NB, Canada E2K 5E8, Canada

Abstract: Here is the solution to the P-NP problem. It provides the solution to the limits of parabolic time which is determined by the Golden Mean Parabola. The limits are the Golden Mean and the Conjugate. The area of the $P=N P$ solution is Pi/4.

1. Introduction

\mathbf{P} versus $\mathbf{N P}$ is the following question of interest to people working with computers and in mathematics: Can every solved problem whose answer can be checked quickly by a computer also be quickly solved by a computer? P and NP are the two types of maths problems referred to: P problems are fast for computers to solve, and so are considered "easy". NP problems are fast (and so "easy") for a computer to check, but are not necessarily easy to solve.

WIKIPEDIA

ILLUSTRATION 1 WIKIPEDIA

ILLUSTRATION 2 PARABOLIC TIME MEETSP=NP

2. The Equations

PARABOLIC TIME: The Golden Mean Equation
$\mathrm{t}^{\wedge} 2-\mathrm{t}-\mathrm{l}=0$
$\mathrm{P}=\mathrm{NP}$: The Circle
$X^{\wedge} 2-y^{\wedge} 2=R^{\wedge} 2$

ILLUSTRATION 3 SIN=COS
$\operatorname{Sin} t=\cos t$
Sint $/ \cos t=1=1$
Tan $\mathrm{t}=1$
$\mathrm{T}=45$ degrees $=0.7854$ rads
$\mathrm{E}=1 / \mathrm{t}$
$=1 / 0.7854=0.1273=$ rho $=$ density
$\mathrm{E}=\mathrm{rho}=\mathrm{y}$ (Universal Density)

ILLLUSTRATION 4 THE GOLDEN MEAN CIRCLE
$\mathrm{X}^{\wedge} 2+\mathrm{y}^{\wedge} 2=\mathrm{R}^{\wedge} 2$
$\mathrm{R}=1 / 2$
$X^{\wedge} 2+y^{\wedge} 2=(1 / 2)^{\wedge} 2$
$\mathrm{Y}=\mathrm{E}=0.1273=$ rho
$X^{\wedge} 2+(0.1273)^{\wedge} 2=1 / 4$
$\mathrm{X}=0.2338$
$\operatorname{Ln} \mathrm{x}=\mathrm{Pi}$
Plug into the Golden Mean Equation:
(0.2338^2-0.2338-1=0.1179~118 (\# of Chemical elements)
$\mathrm{E}=26.667 / 1.602 * 117.9=0.858$
$=\sin 57.29$ degrees $=\sin 1 \mathrm{rad}=\cos 1 \mathrm{rad}$
(Universal Mohr-coulomb Failure)
$\mathrm{t}=1 \mathrm{rad}$
$\mathrm{R}=1 / 2$
$\operatorname{dia}=1=t$
$\sin ^{\wedge} 2(0)+\cos ^{\wedge} 2\left(0=R^{\wedge} 2\right.$
$0+1=\mathrm{R}^{\wedge} 2$
$\mathrm{R}=1$
But $\mathrm{R}=1 / 2$
$\mathrm{R}=2 \mathrm{R}$
$X^{\wedge} 2-x-1=1$
$X^{\wedge} 2-x-1=2 R$
Golden Mean $=$ dia
1.618-(-0.618)=1
$X^{\wedge} 2-x-1=2 R$
$\operatorname{Sin}{ }^{\wedge} 2\left(\right.$ theta $+\cos ^{\wedge} 2$ thet $a=R^{\wedge} 2$
Derivative
$2 \cos$ theta $+2 \sin$ theta $=2 R$
Sin $-\cos =2 R$
Sin theta-cos theta=2(1/2)
Sin theta-cos theta=1
$\operatorname{Cos}=1-\sin$
Momentum=Moment
$\mathrm{Mv}=\mathrm{Fd}$
26.667(0.8515)=2.667(d)
$\mathrm{D}=\mathrm{s}=0.8415$
$\mathrm{V}=\mathrm{s}$
Ds/dt=s
$\mathrm{Y}=\mathrm{y}$ '
$\mathrm{Y}=\mathrm{e}^{\wedge} \mathrm{x}$
Now $\mathrm{t}=1 \quad \mathrm{E}=\mathrm{y}=\mathrm{e}^{\wedge} \mathrm{t}$
$\mathrm{E}=1 / \mathrm{t}=1 / 1=\mathrm{e}^{\wedge} \mathrm{t}$
$\mathrm{t}=0$
So from the Golden Mean parabola
$\mathrm{T}^{\wedge} 2-\mathrm{t}-1=0$
(0) ${ }^{\wedge} 2-0-1=1$

And the circle:
$\mathrm{X}^{\wedge} 2-\mathrm{y}^{\wedge} 2=\mathrm{R}^{\wedge} 2$
$(0)^{\wedge} 2-\left(\mathrm{e}^{\wedge} 0\right)-1=0$
$\mathrm{R}=0$ (Trival)
So $\mathrm{P}=\mathrm{NP}$ at $\mathrm{t}=0$ in parabolic time. The roots are $0.618,1.618$ which are the limits of time. So, if $0.618<\mathrm{t}<1.618, \mathrm{P}=\mathrm{NP}$ and the value is determined by $\mathrm{t} \wedge 2-\mathrm{t}-1$
Area of P-NP circle of radius=1/2
$\mathrm{A}=\mathrm{PiR}^{\wedge} 2=\mathrm{Pi}(1 / 2)^{\wedge} 2=\mathrm{Pi} / 4=45$ degrees (see above)
A bit more on how to look at this problem, is:

Illustration Golden Mean Parabolas
The slope of P vs NP meet at the derivatives.
$2 t-1=-2 t+1$
$4 \mathrm{t}-2=0$
$\mathrm{T}=1 / 2 \mathrm{t}^{\wedge} 2-\mathrm{t}-1=0$
Integrate
$\mathrm{T}^{\wedge} 3 / 3-\mathrm{t}^{\wedge} 2 / 2-\mathrm{t}=\mathrm{E}$
$\mathrm{T}=1 / 2, \mathrm{E}=\mathrm{G}=2 / 3$
This is the Clairnaut Differential Equation.
$\mathrm{D}^{\wedge} 2 / \mathrm{dt}{ }^{\wedge} 2-\mathrm{E}=0$
$D^{\wedge} 2 / d t^{\wedge} 2=G$
Common Areea $t=(-1 / 2,+1 / 2)$
$\mathrm{T}=1$
$1^{\wedge} 3 / 3-1^{\wedge} 2 / 2-1=0.1666=1 / 6$
$1 / 6-(-1 / 6)=2 / 6=1 / 3$
Circumference of the circle
$\mathrm{C}=2 \mathrm{Pir}$
$1 / 3=2 \mathrm{Pi} \mathrm{R}^{\wedge} 2$
$\mathrm{R}=23.03$
Area=Circ
$\mathrm{Y}=\mathrm{y}$ '
$\operatorname{Lnt} \mathrm{t}=\mathrm{t}$

Ln 23.03=3.13~Pi
Equation of a circle
$X^{\wedge} 2-y^{\wedge} 2=R^{\wedge} 2$
$2 x^{\wedge} 2=\mathrm{Pi}^{\wedge} 2$
$\mathrm{X}=\mathrm{Pi}$ / sqrt $2=0 ., 222$
=127=rho=density
Now for the Easy to Solve; Hard to Check:

Mew=1
Mew $=1 /-0.618=-1.618$
This is the golden Mean Equation roots

3. CONCLUSION

$\mathrm{P}=\mathrm{NP}$ has a solution. It lies on the Golden Mean function between $\mathrm{t}=-0.618$, and 1.618. Otherwise, there is no solution.

REFERENCES

[1] ASTROTHEOLOGY THE MISSING LINK CUSACK'SUNIVERSE, P T E CUSACK, BLOGGER

Citation: PAUL T E CUSACK, (2019). P vs. Np Clay Institute Millenum Problem Solution. International Journal of Scientific and Innovative Mathematical Research (IJSIMR), 7(12), pp. 10-14. http://dx.doi.org/ 10.20431/2347-3142.0712003

Copyright: © 2019 Authors, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

