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1. INTRODUCTION 

A generalized class of closed sets was considered by Maki in 1986 [10]. He investigated the sets that 

can be represented as union of closed sets and called them V −sets. Complements of V −sets, i. e., sets 

that are intersection of open sets are called Λ−sets [10]. 

Recall that a real-valued function f defined on a topological space X is called A−continuous [15] if the 

preimage of every open subset of R belongs to A, where A is a collection of subset of X. Most of the 

definitions of function used throughout this paper are consequences of the definition of A−continuity. 

However, for unknown concepts the reader may refer to [2, 5]. 

Hence, a real-valued function f defined on a topological space X is called perfectly continuous[14] (resp. 

contra-continuous [3]) if the preimage of every open subset of R is a clopen (i. e., open and closed) 

(resp. closed) subset of X. 

We have a function is perfectly continuous if and only if it is continuous and contra-continuous. 

Results of Katˇetov [6, 7] concerning binary relations and the concept of an indefinite lower cut set for 

a real-valued function, which is due to Brooks [1], are used in order to give a necessary and sufficient 

conditions for the insertion of a perfectly continuous function between two comparable realvalued 

functions on the topological spaces that Λ−sets are open [10]. 

If g and f are real-valued functions defined on a space X, we write g ≤ f in case g(x) ≤ f(x) for all x in X. 

The following definitions are modifications of conditions considered in [8]. 

A property P defined relative to a real-valued function on a topological space is a pc−property provided 

that any constant function has property P and provided that the sum of a function with property P and 

any perfectly continuous function also has property P. If P1 and P2 are pc−property, the following 

terminology is used: A space X has the weak pc−insertion property for (P1,P2) if and only if for any 

functions g and f on X such that g ≤ f, g has property P1 and f has property P2, then there exists a 

perfectly continuous function h such that g ≤ h ≤ f. 

In this paper, is given a sufficient condition for the weak pc−insertion property. Also, several insertion 

theorems are obtained as corollaries of these results. In addition, the insertion and strong insertion of a 

contracontinuous function between two comparable contra-precontinuous (contrasemi-continuous) 

functions have also recently considered by the author in [11, 12]. 

2. THE MAIN RESULT 

Before giving a sufficient condition for insertability of a perfectly continuous function, the necessary 

definitions and terminology are stated. 

Let (X,τ) be a topological space, the family of all open, closed and clopen will be denoted by O(X,τ), 

C(X,τ) and Clo(X,τ), respectively. 

Definition 2.1. Let A be a subset of a topological space (X,τ). We define the subsets AΛ and AV as follows: 
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AΛ = ∩{O : O ⊇ A,O ∈ O(X,τ)} and AV = ∪{F : F ⊆ A,F ∈ C(X,τ)}. 

In [4, 9, 13], AΛ is called the kernel of A. 

Definition 2.2. Let A be a subset of a topological space (X,τ). Respectively, we define the closure, 

interior, clo-closure and clo-interior of a set A, denoted by Cl(A),Int(A),clo(Cl(A)) and clo(Int(A)) as 

follows: 

Cl(A) = ∩{F : F ⊇ A,F ∈ C(X,τ)}, Int(A) = ∪{O : O ⊆ A,O ∈ O(X,τ)}, clo(Cl(A)) = ∩{F : F ⊇ A,F ∈ 

Clo(X,τ)} and clo(Int(A)) = ∪{O : O ⊆ A,O ∈ Clo(X,τ)}. 

If (X,τ) be a topological space whose Λ−sets are open, then respectively, we have AV ,clo(Cl(A)) are 

closed, clopen and AΛ,clo(Int(A)) are open, clopen. 

The following first two definitions are modifications of conditions considered in [6, 7]. 

Definition 2.3. If ρ is a binary relation in a set S then ρ¯ is defined as follows: x ρ¯ y if and only if y ρ 

v implies x ρ v and u ρ x implies u ρ y for any u and v in S. 

Definition 2.4. A binary relation ρ in the power set P(X) of a topological space X is called a strong 

binary relation in P(X) in case ρ satisfies each of the following conditions: 

 If Ai ρ Bj for any i ∈{1,...,m} and for any j ∈{1,...,n}, then there exists a set C in P(X) such that Ai ρ 

C and C ρ Bj for any i ∈{1,...,m} and any j ∈{1,...,n}. 

 If A ⊆ B, then A ρ¯ B. 

 If A ρ B, then clo(Cl(A)) ⊆ B and A ⊆ clo(Int(B)). 

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [1] as follows: 

Definition 2.5. If f is a real-valued function defined on a space X and if {x ∈ X : f(x) < ℓ} ⊆ A(f,ℓ) ⊆ {x 

∈ X : f(x) ≤ ℓ} for a real number ℓ, then A(f,ℓ) is called a lower indefinite cut set in the domain of f at 

the level ℓ. 

We now give the following main result: 

Theorem 2.1. Let g and f be real-valued functions on a topological space X, in which Λ−sets are open, 

with g ≤ f. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite 

cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number t such that if t1 

< t2 then A(f,t1) ρ A(g,t2), then there exists a perfectly continuous function h defined on X such that g 

≤ h ≤ f. Proof. Let g and f be real-valued functions defined on X such that g ≤ f. By hypothesis there 

exists a strong binary relation ρ on the power set of X and there exist lower indefinite cut sets A(f,t) and 

A(g,t) in the domain of f and g at the level t for each rational number t such that if t1 < t2 then A(f,t1) ρ 

A(g,t2). 

Define functions F and G mapping the rational numbers Q into the power set of X by F(t) = A(f,t) and 

G(t) = A(g,t). If t1 and t2 are any elements of Q with t1 < t2, then F(t1) ρ¯ F(t2),G(t1) ρ¯ G(t2), and 

F(t1) ρ G(t2). By Lemmas 1 and 2 of [7] it follows that there exists a function H mapping Q into the 

power set of X such that if t1 and t2 are any rational numbers with t1 < t2, then F(t1) ρ H(t2),H(t1) ρ 

H(t2) and H(t1) ρ G(t2). 

For any x in X, let h(x) = inf{t ∈Q : x ∈ H(t)}. 

We first verify that g ≤ h ≤ f: If x is in H(t) then x is in G(t′) for any t′ > t; since x is in G(t′) = A(g,t′) 

implies that g(x) ≤ t′, it follows that g(x) ≤ t. Hence g ≤ h. If x is not in H(t), then x is not in F(t′) for any 

t′ < t; since x is not in F(t′) = A(f,t′) implies that f(x) > t′, it follows that f(x) ≥ t. Hence h ≤ f. 

Also, for any rational numbers t1 and t2 with t1 < t2, we have h−1(t1,t2) = clo(Int(H(t2))) \ 

clo(Cl(H(t1))). Hence h−1(t1,t2) is a clopen subset of X, i. e., h is a perfectly continuous function on X.  

The above proof used the technique of proof of Theorem 1 of [6]. 

3. APPLICATIONS 

The abbreviations c, pc and cc are used for continuous, perfectly continuous and contra-continuous, 

respectively. 
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Before stating the consequences of theorems 2.1, we suppose that X is a topological space that Λ−sets 

are open. 

Corollary 3.1. If for each pair of disjoint closed (resp. open) sets F1,F2 of X , there exist clopen sets 

G1 and G2 of X such that F1 ⊆ G1, F2 ⊆ G2 and G1∩G2 = ∅ then X has the weak pc−insertion property 

for (c,c) ( resp. 

(cc,cc)). 

Proof. Let g and f be real-valued functions defined on the X, such that f and g are c (resp. cc), and g ≤ 

f.If a binary relation ρ is defined by A ρ B in case Cl(A) ⊆ Int(B) (resp. AΛ ⊆ BV ), then by hypothesis ρ 

is a strong binary relation in the power set of X. If t1 and t2 are any elements of Q with t1 < t2, then 

A(f,t1) ⊆{x ∈ X : f(x) ≤ t1}⊆{x ∈ X : g(x) < t2}⊆ A(g,t2) ; 

since {x ∈ X : f(x) ≤ t1} is a closed (resp. open) set and since {x ∈ X : g(x) < t2} is an open (resp. closed) 

set, it follows that Cl(A(f,t1)) ⊆ Int(A(g,t2)) (resp. A(f,t1)Λ ⊆ A(g,t2)V ). Hence t1 < t2 implies that A(f,t1) 

ρ A(g,t2). The proof follows from Theorem 2.1.  

Corollary 3.2. If for each pair of disjoint closed (resp. open) sets F1,F2, there exist clopen sets G1 and 

G2 such that F1 ⊆ G1, F2 ⊆ G2 and G1∩G2 = ∅ then every continuous (resp. contra-continuous) 

function is perfectly continuous. 

Proof. Let f be a real-valued continuous (resp. contra-continuous) function defined on the X. By setting 

g = f, then by Corollary 3.1, there exists a perfectly continuous function h such that g = h = f. 

Corollary 3.3. If for each pair of disjoint closed (resp. open) sets F1,F2 of X , there exist clopen sets 

G1 and G2 of X such that F1 ⊆ G1, F2 ⊆ G2 and G1∩ G2 = ∅ then X has the pc−insertion property for 

(c,c) (resp. (cc,cc)). Proof. Let g and f be real-valued functions defined on the X, such that f and g are c 

(resp. cc), and g < f. Set h = (f + g)/2, thus g < h < f, and by Corollary 3.2, since g and f are perfectly 

continuous functions hence h is a perfectly continuous function. 

Corollary 3.4. If for each pair of disjoint subsets F1,F2 of X , such that F1 is closed and F2 is open, 

there exist clopen subsets G1 and G2 of X such that F1 ⊆ G1, F2 ⊆ G2 and G1∩G2 = ∅ then X have 

the weak pc−insertion property for (c,cc) and (cc,c). 

Proof. Let g and f be real-valued functions defined on the X, such that g is c (resp. cc) and f is cc (resp. 

c), with g ≤ f.If a binary relation ρ is defined by A ρ B in case AΛ ⊆ Int(B) (resp. Cl(A) ⊆ BV ), then by 

hypothesis ρ is a strong binary relation in the power set of X. If t1 and t2 are any elements of Q with t1 

< t2, then 

A(f,t1) ⊆{x ∈ X : f(x) ≤ t1}⊆{x ∈ X : g(x) < t2}⊆ A(g,t2) ; 

since {x ∈ X : f(x) ≤ t1} is an open (resp. closed) set and since {x ∈ X : g(x) < t2} is an open (resp. 

closed) set, it follows that A(f,t1)Λ ⊆ Int(A(g,t2)) (resp. Cl(A(f,t1)) ⊆ A(g,t2)V ). Hence t1 < t2 implies 

that 

A(f,t1) ρ A(g,t2). The proof follows from Theorem 2.1.   
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