Weak Insertion of a Perfectly Continuous Function

MAJID MIRMIRAN*
Department of Mathematics, University of Isfahan, Iran.
*Corresponding Author: MAJID MIRMIRAN, Department of Mathematics, University of Isfahan, Iran.

Abstract

A sufficient condition in terms of lower cut sets are given for the insertion of a perfectly continuous function between two comparable real-valued functions on such topological spaces that Λ-sets are open.

1. INTRODUCTION

A generalized class of closed sets was considered by Maki in 1986 [10]. He investigated the sets that can be represented as union of closed sets and called them V-sets. Complements of V-sets, i. e., sets that are intersection of open sets are called Λ-sets [10].
Recall that a real-valued function f defined on a topological space X is called A-continuous [15] if the preimage of every open subset of R belongs to A, where A is a collection of subset of X. Most of the definitions of function used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts the reader may refer to [2,5].
Hence, a real-valued function f defined on a topological space X is called perfectly continuous[14] (resp. contra-continuous [3]) if the preimage of every open subset of R is a clopen (i. e., open and closed) (resp. closed) subset of X.

We have a function is perfectly continuous if and only if it is continuous and contra-continuous.
Results of Kat ${ }^{\text {e etov }}[6,7]$ concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [1], are used in order to give a necessary and sufficient conditions for the insertion of a perfectly continuous function between two comparable realvalued functions on the topological spaces that $\Lambda-$ sets are open [10].
If g and f are real-valued functions defined on a space X, we write $g \leq f$ in case $g(x) \leq f(x)$ for all x in X. The following definitions are modifications of conditions considered in [8].

A property P defined relative to a real-valued function on a topological space is a $p c-$ property provided that any constant function has property P and provided that the sum of a function with property P and any perfectly continuous function also has property P. If $P 1$ and $P 2$ are $p c-$ property, the following terminology is used: A space X has the weak pc-insertion property for $(P 1, P 2)$ if and only if for any functions g and f on X such that $g \leq f, g$ has property $P 1$ and f has property $P 2$, then there exists a perfectly continuous function h such that $g \leq h \leq f$.

In this paper, is given a sufficient condition for the weak $p c$-insertion property. Also, several insertion theorems are obtained as corollaries of these results. In addition, the insertion and strong insertion of a contracontinuous function between two comparable contra-precontinuous (contrasemi-continuous) functions have also recently considered by the author in [11, 12].

2. The Main Result

Before giving a sufficient condition for insertability of a perfectly continuous function, the necessary definitions and terminology are stated.

Let (X, τ) be a topological space, the family of all open, closed and clopen will be denoted by $O(X, \tau)$, $C(X, \tau)$ and $C l o(X, \tau)$, respectively.
Definition 2.1. Let A be a subset of a topological space (X, τ). We define the subsets A^{Λ} and A^{V} as follows:
$A^{\Lambda}=\cap\{O: O \supseteq A, O \in O(X, \tau)\}$ and $A^{V}=\cup\{F: F \subseteq A, F \in C(X, \tau)\}$.
In [4, 9, 13], A^{Λ} is called the kernel of A.
Definition 2.2. Let A be a subset of a topological space (X, τ). Respectively, we define the closure, interior, clo-closure and clo-interior of a set A, denoted by $\operatorname{Cl}(A), \operatorname{Int}(A), \operatorname{clo}(\operatorname{Cl}(A))$ and $\operatorname{clo}(\operatorname{Int}(A))$ as follows:
$C l(A)=\cap\{F: F \supseteq A, F \in C(X, \tau)\}, \operatorname{Int}(A)=\cup\{O: O \subseteq A, O \in O(X, \tau)\}, \operatorname{clo}(C l(A))=\cap\{F: F \supseteq A, F \in$ $\operatorname{Clo}(X, \tau)\}$ and $\operatorname{clo}(\operatorname{Int}(A))=\cup\{O: O \subseteq A, O \in \operatorname{Clo}(X, \tau)\}$.
If (X, τ) be a topological space whose Λ-sets are open, then respectively, we have $A^{V}, \operatorname{clo}(\operatorname{Cl}(A))$ are closed, clopen and $A^{\Lambda}, \operatorname{clo}(\operatorname{Int}(A))$ are open, clopen.

The following first two definitions are modifications of conditions considered in $[6,7]$.
Definition 2.3. If ρ is a binary relation in a set S then ρ^{-}is defined as follows: $x \rho^{-} y$ if and only if $y \rho$ v implies $x \rho v$ and $u \rho x$ implies $u \rho y$ for any u and v in S.
Definition 2.4. A binary relation ρ in the power set $P(X)$ of a topological space X is called a strong binary relation in $P(X)$ in case ρ satisfies each of the following conditions:

- If $A_{i} \rho B_{j}$ for any $i \in\{1, \ldots, m\}$ and for any $j \in\{1, \ldots, n\}$, then there exists a set C in $P(X)$ such that $A_{i} \rho$ C and $C \rho B_{j}$ for any $i \in\{1, \ldots, m\}$ and any $j \in\{1, \ldots, n\}$.
- If $A \subseteq B$, then $A \rho^{-} B$.
- If $A \rho B$, then $\operatorname{clo}(C l(A)) \subseteq B$ and $A \subseteq \operatorname{clo}(\operatorname{Int}(B))$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [1] as follows:
Definition 2.5. If f is a real-valued function defined on a space X and if $\{x \in X: f(x)<\ell\} \subseteq A(f, \ell) \subseteq\{x$ $\in X: f(x) \leq \ell\}$ for a real number ℓ, then $A(f, \ell)$ is called a lower indefinite cut set in the domain of f at the level ℓ.

We now give the following main result:
Theorem 2.1. Let g and f be real-valued functions on a topological space X, in which Λ-sets are open, with $g \leq f$. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite cut sets $A(f, t)$ and $A(g, t)$ in the domain of f and g at the level t for each rational number t such that if $t 1$ $<t 2$ then $A(f, t 1) \rho A(g, t 2)$, then there exists a perfectly continuous function h defined on X such that g $\leq h \leq f$. Proof. Let g and f be real-valued functions defined on X such that $g \leq f$. By hypothesis there exists a strong binary relation ρ on the power set of X and there exist lower indefinite cut sets $A(f, t)$ and $A(g, t)$ in the domain of f and g at the level t for each rational number t such that if $t 1<t 2$ then $A(f, t 1) \rho$ $A(g, t 2)$.

Define functions F and G mapping the rational numbers Q into the power set of X by $F(t)=A(f, t)$ and $G(t)=A(g, t)$. If $t 1$ and $t 2$ are any elements of Q with $t 1<t 2$, then $F(t 1) \rho^{-} F(t 2), G(t 1) \rho^{-} G(t 2)$, and $F(t 1) \rho G(t 2)$. By Lemmas 1 and 2 of [7] it follows that there exists a function H mapping Q into the power set of X such that if $t 1$ and $t 2$ are any rational numbers with $t 1<t 2$, then $F(t 1) \rho H(t 2), H(t 1) \rho$ $H(t 2)$ and $H(t 1) \rho G(t 2)$.

For any x in X, let $h(x)=\inf \{t \in \mathrm{Q}: x \in H(t)\}$.
We first verify that $g \leq h \leq f$: If x is in $H(t)$ then x is in $G\left(t^{\prime}\right)$ for any $t^{\prime}>t$; since x is in $G\left(t^{\prime}\right)=A\left(g, t^{\prime}\right)$ implies that $g(x) \leq t^{\prime}$, it follows that $g(x) \leq t$. Hence $g \leq h$. If x is not in $H(t)$, then x is not in $F\left(t^{\prime}\right)$ for any $t^{\prime}<t$; since x is not in $F\left(t^{\prime}\right)=A\left(f, t^{\prime}\right)$ implies that $f(x)>t^{\prime}$, it follows that $f(x) \geq t$. Hence $h \leq f$.

Also, for any rational numbers $t 1$ and $t 2$ with $t 1<t 2$, we have $h^{-1}(t 1, t 2)=\operatorname{clo}(\operatorname{Int}(H(t 2)))$ \} $\operatorname{clo}(C l(H(t 1)))$. Hence $h^{-1}(t 1, t 2)$ is a clopen subset of X, i. e., h is a perfectly continuous function on X.

The above proof used the technique of proof of Theorem 1 of [6].

3. APPLICATIONS

The abbreviations $c, p c$ and $c c$ are used for continuous, perfectly continuous and contra-continuous, respectively.
International Journal of Scientific and Innovative Mathematical Research (IJSIMR)

Before stating the consequences of theorems 2.1, we suppose that X is a topological space that Λ-sets are open.

Corollary 3.1. If for each pair of disjoint closed (resp. open) sets $F 1, F 2$ of X, there exist clopen sets $G 1$ and $G 2$ of X such that $F 1 \subseteq G 1, F 2 \subseteq G 2$ and $G 1 \cap G 2=\emptyset$ then X has the weak $p c$-insertion property for (c, c) (resp.
$(c c, c c))$.
Proof. Let g and f be real-valued functions defined on the X, such that f and g are c (resp. cc), and $g \leq$ f. If a binary relation ρ is defined by $A \rho B$ in case $C l(A) \subseteq \operatorname{Int}(B)$ (resp. $A^{\Lambda} \subseteq B^{V}$), then by hypothesis ρ is a strong binary relation in the power set of X. If $t 1$ and $t 2$ are any elements of Q with $t 1<t 2$, then
$A(f, t 1) \subseteq\{x \in X: f(x) \leq t 1\} \subseteq\{x \in X: g(x)<t 2\} \subseteq A(g, t 2) ;$
since $\{x \in X: f(x) \leq t 1\}$ is a closed (resp. open) set and since $\{x \in X: g(x)<t 2\}$ is an open (resp. closed) set, it follows that $C l(A(f, t 1)) \subseteq \operatorname{Int}(A(g, t 2))\left(\right.$ resp. $\left.A(f, t 1)^{\Lambda} \subseteq A(g, t 2)^{V}\right)$. Hence $t 1<t 2$ implies that $A(f, t 1)$ $\rho A(g, t 2)$. The proof follows from Theorem 2.1.
Corollary 3.2. If for each pair of disjoint closed (resp. open) sets $F 1, F 2$, there exist clopen sets $G 1$ and $G 2$ such that $F 1 \subseteq G 1, F 2 \subseteq G 2$ and $G 1 \cap G 2=\varnothing$ then every continuous (resp. contra-continuous) function is perfectly continuous.
Proof. Let f be a real-valued continuous (resp. contra-continuous) function defined on the X. By setting $g=f$, then by Corollary 3.1, there exists a perfectly continuous function h such that $g=h=f$.
Corollary 3.3. If for each pair of disjoint closed (resp. open) sets $F 1, F 2$ of X, there exist clopen sets $G 1$ and $G 2$ of X such that $F 1 \subseteq G 1, F 2 \subseteq G 2$ and $G 1 \cap G 2=\emptyset$ then X has the $p c$-insertion property for (c, c) (resp. (cc,cc)). Proof. Let g and f be real-valued functions defined on the X, such that f and g are c (resp. $c c$), and $g<f$. Set $h=(f+g) / 2$, thus $g<h<f$, and by Corollary 3.2, since g and f are perfectly continuous functions hence h is a perfectly continuous function.
Corollary 3.4. If for each pair of disjoint subsets $F 1, F 2$ of X, such that $F 1$ is closed and $F 2$ is open, there exist clopen subsets $G 1$ and $G 2$ of X such that $F 1 \subseteq G 1, F 2 \subseteq G 2$ and $G 1 \cap G 2=\emptyset$ then X have the weak $p c$-insertion property for $(c, c c)$ and $(c c, c)$.
Proof. Let g and f be real-valued functions defined on the X, such that g is c (resp. $c c$) and f is $c c$ (resp. $c)$, with $g \leq f$.If a binary relation ρ is defined by $A \rho B$ in case $A^{\Lambda} \subseteq \operatorname{Int}(B)$ (resp. $\left.C l(A) \subseteq B^{V}\right)$, then by hypothesis ρ is a strong binary relation in the power set of X. If $t 1$ and $t 2$ are any elements of Q with $t 1$ $<t 2$, then
$A(f, t 1) \subseteq\{x \in X: f(x) \leq t 1\} \subseteq\{x \in X: g(x)<t 2\} \subseteq A(g, t 2) ;$
since $\{x \in X: f(x) \leq t 1\}$ is an open (resp. closed) set and since $\{x \in X: g(x)<t 2\}$ is an open (resp. closed) set, it follows that $A(f, t 1)^{\Lambda} \subseteq \operatorname{Int}(A(g, t 2))\left(\right.$ resp. $\left.C l(A(f, t 1)) \subseteq A(g, t 2)^{V}\right)$. Hence $t 1<t 2$ implies that
$A(f, t 1) \rho A(g, t 2)$. The proof follows from Theorem 2.1.

ACKNOWLEDGEMENT

This research was partially supported by Centre of Excellence for Mathematics (University of Isfahan).

References

[1] F. Brooks, Indefinite cut sets for real functions, Amer. Math. Monthly, 78 (1971), 1007-1010.
[2] J. Dontchev, The characterization of some peculiar topological space via $\alpha-$ and β-sets, Acta Math. Hungar., 69 (1-2)(1995), 67-71.
[3] J. Dontchev, Contra-continuous functions and strongly S-closed space, Intrnat. J. Math. Math. Sci., 19 (2)(1996), 303-310.
[4] J. Dontchev, and H. Maki, On sg-closed sets and semi- λ-closed sets, Questions Answers Gen. Topology, 15 (2)(1997), 259-266.
[5] M. Ganster and I. Reilly, A decomposition of continuity, Acta Math. Hungar., 56 (3-4)(1990), 299-301.
[6] M. Kaťetov, On real-valued functions in topological spaces, Fund. Math., 38 (1951), 85-91.

Weak Insertion of a Perfectly Continuous Function

[7] M. Katetov, Correction to, "On real-valued functions in topological spaces", Fund. Math., 40 (1953), 203205.
[8] E. Lane, Insertion of a continuous function, Pacific J. Math., 66 (1976), 181-190.
[9] S. N. Maheshwari and R. Prasad, On $R_{O s}-$ spaces, Portugal. Math., 34 (1975), 213-217.
[10] H. Maki, Generalized Λ-sets and the associated closure operator, The special Issue in commemoration of Prof. Kazuada IKEDA's Retirement, (1986), 139-146.
[11] M. Mirmiran, Insertion of a contra-continuous function between two comparable contra-precontinuous (contra-semi-continuous) functions, International Journal of Scientific and Innovative Mathematical Research, 7(10)(2019), 34-40.
[12] M. Mirmiran, Strong insertion of a contra-continuous function between two comparable contraprecontinuous (contra-semi-continuous) functions, International Journal of Scientific and Innovative Mathematical Research, 7(11)(2019), 12-16.
[13] M. Mrsevic, On pairwise R and pairwise $R 1$ bitopological spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 30 (1986), 141-145.
[14] T. Noiri, Super-continuity and some strong forms of continuity, Indian J. Pure Appl. Math., 15 (1984), 241250.
[15] M. Przemski, A decomposition of continuity and α-continuity, Acta Math. Hungar., 61 (1-2)(1993), 93-98.

Citation: MAJID MIRMIRAN, (2019). Weak Insertion of a Perfectly Continuous Function. International Journal of Scientific and Innovative Mathematical Research (IJSIMR), 7(12), pp. 6-9. http://dx.doi.org/ 10.20431/2347-3142.0712002

Copyright: © 2019 Authors, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

