Navier-Stokes Clay Institute Millenium Problem Solution

PAUL T E CUSACK*
Independent Researcher, BSc E, DULE, 1641 Sandy Point Rd, Saint John, NB, Canada E2K 5E8, Canada

*Corresponding Author: PAUL T E CUSACK, Independent Researcher, BSc E, DULE, 1641 Sandy Point Rd, Saint John, NB, Canada E2K 5E8, Canada

> Abstract: Here is a paper that provides the solution to the Navier-Stokes Clay Institute Problem. The Golden Mean parabola is a solution to this equation. The solution shows that the Navier Stokes Equation is smooth.

1. INTRODUCTION

In three space dimensions and time, given an initial velocity field, there exists a vector velocity and a scalar pressure field, which are both smooth and globally defined, that solve the Navier-Stokes equations.

2. The NAVIER STOKES EQUATION

Rho[du/dt+u* del u]=Del * sigma +F
Rho=density
Du/dt=velocity
$\mathrm{U}=$ position
Del=gradient
Del sigma=Shear
$\mathrm{F}=$ all other forces

[FLUID DYNAMICS AND THE NAVIER-STOKES EQUATION, S DOBEK, 2012]

The solution to this equation is the root of the Golden Mean Equation where the variable is time. G.M. $=1.618$

First, let's break down the components as follows.
Density=rho
Rho=M/Volume
For an ellipsoid with axis $1 \times 8 \times 22$ (or $3 \times 24 \times 66$) has a volume of 19905 and a Surface Area of 1 .

Ellipsoid

Mass $\mathrm{M}=1 / \mathrm{c}^{\wedge} 4$
Here is how.

Strain=sigma/E
$\mathrm{E}=1 / 0.4233=1 /(\mathrm{Pi}-\mathrm{e})$
Lim $x \rightarrow 0$ (strain) $=\mathrm{d}$ delta/dt
$\mathrm{D}=\mathrm{E}$ * sigma'
$=1 / 0.4233^{*}$ ($\mathrm{P}^{\prime} / \mathrm{A}^{\prime \prime}$)
P is constant
A'=circumference=2Pi R
Let $\mathrm{R}=1 / 2$
$\mathrm{A}=\left(\mathrm{PiR}^{\wedge} 2\right){ }^{\prime}=2 \mathrm{Pi}(\mathrm{R}=\mathrm{Pi}$
Delta $=1 /(0.4233) * P / P i$
$\mathrm{P}=\left(2^{*} \mathrm{~s}\right)=\left(2^{*} 4 / 3\right)=8 / 3=2.667$
Delta $=2.022$
$=\mathrm{Y}=\mathrm{e}^{\wedge}-\mathrm{t}^{*} \cos \mathrm{t}$
$=\mathrm{dM} / \mathrm{dt}$
$2.02=\mathrm{e}^{\wedge}(-\mathrm{t})(-\sin \mathrm{t})$
Solving for t :
Sin $\mathrm{t}=2$ rads
$\mathrm{T}=114.59$ degrees
Substituting:
$\mathrm{E}^{\wedge}(-2)(\sin 2)$
$=1 / 81$
$=1 / \mathrm{c}^{\wedge} 4$
"c" is a fourth order tensor and is also the gradient or "Del".
Plane ax+by+cz=0
Sin theta $=c=2.9979293$
$\operatorname{Sin} \mathrm{t}=3$

$\mathrm{T}=171$ fdegrees

Sin theta $=0.1411 \mathrm{l} / \sin$ theta $=\mathrm{M}=0.858=$ Energy $=\sin 1$

$\mathrm{E}=|\mathrm{s}||t| \sin$ theta
Theta=60 degrees for Mohr-Coulomb theory.
$\mathrm{E}=(1.334)(1) \sin 60$ degrees
$=115.5$
$\mathrm{F}=$ sin theta=3 rads
Theta=171 degrees
Sin 171 degrees $=0.1411 \quad 0.858$
Sigma=E strain
If Surface Area=1
$\mathrm{F}=$ sigma
$\mathrm{F}=\mathrm{E}$ strain
$0.858=115.5$ *strain
Strain $=1$
Now the Polar Moment of Inertia for the cross section of the ellipsoid:

$\left.\mathrm{J}=\mathrm{Pi} / 2 *(\mathrm{c} 2)^{\wedge} 4-\mathrm{Pi} / 2 *(\mathrm{c} 1)^{\wedge} 4\right)$
$\mathrm{J}=\mathrm{Pi} / 2(13.622)^{\wedge} 4-\mathrm{Pi} / 2 *(2668)$
The universe is 13.622 Billion LY across. The Hole in the middle is $\mathrm{a}=0.2668$ Billion LY across.

J=4672
Now the Shear component, is is given by the equation
Tau max=Tc/J
Tau max=(0.4233)(3)/4672 [MECHANICS OF MATERIALS, BEER ET AL]
$=2.718$
=base e
Referring to the original equation,, we now have the density, the mass, the gradient, the shear, and $\mathrm{f}=0$. All that remains is the acceleration, velocity, and position.

Delta=PL/AE [ibid]
Delta' $=(\mathrm{dP} / \mathrm{dt})(\mathrm{dL} / \mathrm{dt}) /(\mathrm{dA} / \mathrm{dt})(\mathrm{dE} / \mathrm{dt})$
$\mathrm{dP} / \mathrm{dt}=\mathrm{d}(\sin$ theta $)=-\cos$ theta)
$\mathrm{dL} / \mathrm{dt}=$ velocity
$\mathrm{dA} / \mathrm{dt}=$ circumference $=2 \mathrm{Pi}(\mathrm{R}$
$\mathrm{dE} / \mathrm{d}=1$ (Newtonian Fluid)
delta' $=\cos$ theta / (2 Pi (1)* delta'
cos theta=2Pi
theta $=1 \mathrm{rad}$
Substituting these parameters in to the original equation:
$\mathrm{s}\left[(1)-(1 / \mathrm{s}) * \mathrm{c}^{*}(1 / \mathrm{s})=\right.$ Tau max
$\mathrm{s}^{\wedge} 3$-sc-e=(4/3)-32.718=1.615
$=\operatorname{Ln}(1 / t)=1.615$
where
$\mathrm{Y}=0.2018=\mathrm{e}^{\wedge} \mathrm{t} \cos 1$ (dampened cosine curve)
T0-t $=1-0.9849=0.015=1 / 6.66=3 / 2$ (Mass Gap)
$\mathrm{E}^{\wedge}(3 / 2)=4.4824=$ Mass
$\operatorname{Ln}(1 / t)=t$
Ln y'=y
The solution to the Navier Stoke's problem is the dampened cosine curve at $\mathrm{t}=1$.
In conclusion, the dampened cosine curve is smooth.
The Density=rho/ M/Volume is smooth because the Volume of an ellipsoid is smooth. The Mass is smooth because the $M=1 / c^{\wedge} 4$. $C^{\wedge} 4$ is smooth.

The Velocity du/dt is a parabola so its derivative is smooth. The position u is a scaler. Its derivative is constant.

Del is the gradient which is $c^{\wedge} 4$. It s derivative is the volume of a sphere equation. It is smooth.
The Shear Tau max is smooth since it is Torque $* \mathrm{c} / \mathrm{J}$. Torque is the force $=\sin$ theta. Its derivative is smooth. C is a constant. Its derivative is a constant. Anfd the Polar Moment of Inertia Pi/2(c2-c1)^4. Its derivative is smooth.

So thev Navier Stokes Equation is smooth.

Volume of Sphere=4/3 Pi (2.9978929)^3 =112.8
c=2.997929
Sigma/E=strain
Sigma/F/Surface Area
S.A. $=1$
$\mathrm{E}=1 / 0.4233=1 / \mathrm{cuz}$
strain $=\mathrm{F} / \mathrm{E}=2.667 / 1 / 0.4233=112.8$
This means that the forth order tensor, the speed of light, is as smooth as a sphere. That is why the Navier-stokes Equation is smooth.

References

[1] FLUID DYNAMICS AND THE NAVIER-STOKES EQUATION, S DOBEK, 2012
[2] MECHANICS OF MATERIALS, F. P. BEER ET AL, McGraw Hill 2002
[3] VECTORS, TENSORS, AND THE BASIC EQUATIONS OF FLUID MECHANICS, R ARIS, DOVER 1961

Citation: PAUL T E CUSACK, (2019). Navier-Stokes Clay Institute Millenium Problem Solution. International Journal of Scientific and Innovative Mathematical Research (IJSIMR), 7(12), pp. 1-5. http://dx.doi.org/ 10.20431/2347-3142.0712001

Copyright: © 2019 Authors, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

