International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 7, Issue 11, 2019, PP 12-14 ISSN No. (Online) 2454-9444 DOI: http://dx.doi.org/10.20431/2347-3142.0711002 www.arcjournals.org

Birch and Swinnerton-Dyer Conjecture Clay Institute Millenium Problem Solution

PAUL T E CUSACK*

Independent Researcher, BSc E, DULE, 1641 Sandy Point Rd, Saint John, NB, Canada E2K 5E8, Canada

***Corresponding Author:** *PAUL T E CUSACK, Independent Researcher, BSc E, DULE, 1641 Sandy Point Rd, Saint John, NB, Canada E2K 5E8, Canada*

Abstract: This paper presents the solution to the Birch Swimmerton problem. It entails the use of critical damping of a Mass-Spring-Dash Pod system which, when modelled mathematically, provide the equation that allows the solution of the zeta problem to be solved.

1. INTRODUCTION

But in special cases one can hope to say something. When the solutions are the points of an abelian variety, the Birch and Swinnerton-Dyer conjecture asserts that the size of the group of rational points is related to the behavior of an associated zeta function $\zeta(s)$ near the point s=1. In particular this amazing conjecture asserts that if $\zeta(1)$ is equal to 0, then there are an infinite number of rational points (solutions), and conversely, if $\zeta(1)$ is not equal to 0, then there is only a finite number of such points.

2. EQUATION OF MOTION

From Verruijt, we know the equation of motion for a mass -spring- dashpod system is:

m*d2u/dt2+c*du/dt+ku=0

So, taking the resonant frequency into account, the equation from Verruijt becomes:

d2u/dt2+2zw0*du/dt+w02u=0

Where w0=resonant frequency and z is a measure of the system damping.

At critical damping, the characteristic equation is the golden mean function:

x-=1/[x-1]

Or,

x2-x-1=0

The roots to this equation are, of course, -0.618, 1.618.

VALUE FOR i-the imaginary number

Now, before examining zeta z in equation form, we calculate a real value for the imaginary i=sqrt(-1)

$$[1-i]=1/[(1-i)-1]$$

 $1-i=1/-i$
 $-i=1/[1-i]$
 $i=1/[i-1]$
 $x=1/[x-1]$

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)

So, sqrt(-1)= -0.618, 1.618 DAMPING RATIO ZETA z Now, zeta=z=damping ratio=w/w0: $du0/dw=0:w/w0=\sqrt{1-2z^2}$ Algebraically: du0/0=dw w=w0*sqrt[1-2*z2]Taking the derivative: du0/0=dw=w'=[w0*(1-2z2)1/2]'w0/2*(1-2z2)1.5]/1.5 In the Birch conjecture, there are two possibilities to consider. They are: z(1)=0 and z(1)(not=)0In the first case: 0=w0/3[(1-2(1)2]1.5 0 = w0/3(11.5)W0=0 Z(1)=0,w0=0CRITICAL DAMPING In the second case, we have critical damping. z(1) (not =)m 0 Say z(1)=11=w0/3[(1-2(12)]1.5 $w_{0=3}$ Or w0=C1 w0 is a real number. In case 1 again: Z(1)=0,w0=0 $du/dw=0w/w0=\sqrt{(1-2(z_2))}$ w/0=sqrt[(1-2(z)2)]w=0w/w0=0/0 Dividing by zero has infinite solution. Now, finally, in the critical damping case: du/dw=0 $w/w0 = \sqrt{(1-2(z^2))}$ $w/C1 = \sqrt{(1-2(12))}$ $w = \sqrt{(-1)(C1)}$ We know sqrt(-1) is =-0.618, 1.618 So, w=-0.618 0r 1.618 w/w0=0.618 C1/C1=0.618 Therefore there is a real solution to z at critical damping.

3. CONCLUSION

Simple Mechanics combined with knowledge of the zeta function and the value of the imaginary number provide the ingredients to solve the Birch and Swinnerton-Dyer Conjecture.

REFERENCES

[1] AN INTRODUCTION TO SOIL DYNAMICS, A VERRIJUT SPRINGER

Citation: PAUL T E CUSACK, (2019). Birch and Swinnerton-Dyer Conjecture Clay Institute Millenium Problem Solution. International Journal of Scientific and Innovative Mathematical Research (IJSIMR), 7(11), pp. 12-14. http://dx.doi.org/10.20431/2347 -3142.0711002

Copyright: © 2019 Authors, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.