International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 7, Issue 10, 2019, PP 34-40 ISSN No. (Online) 2454-9444 DOI: http://dx.doi.org/10.20431/2347-3142.0710004 www.arcjournals.org

Insertion of a Contra-Continuous Function between two Comparable Contra-Precontinuous (Contra-Semi-Continuous) Functions

MAJID MIRMIRAN*

Department of Mathematics, University of Isfahan, Iran.

*Corresponding Author: L MAJID MIRMIRAN, Department of Mathematics, University of Isfahan, Iran.

Abstract: A necessary and sufficient condition in terms of lower cut sets are given for the insertion of a contracontinuous function between two comparable real-valued functions on such topological spaces that kernel of sets are open.

Keywords: Insertion, Strong binary relation, Semi-open set, Preopen set, Contracontinuous function, Lower cut set.

1. INTRODUCTION

The concept of a preopen set in a topological space was introduced by H.H. Corson and E. Michael in 1964 [4]. A subset *A* of a topological space (X,τ) is called *preopen* or *locally dense* or *nearly open* if $A \subseteq Int(Cl(A))$. A set *A* is called *preclosed* if its complement is preopen or equivalently if $Cl(Int(A)) \subseteq A$. The term ,preopen, was used for the first time by A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb [20], while the concept of a , locally dense, set was introduced by H.H. Corson and E. Michael [4].

The concept of a semi-open set in a topological space was introduced by N. Levine in 1963 [17]. A subset A of a topological space (X,τ) is called *semiopen* [10] if $A \subseteq Cl(Int(A))$. A set A is called *semi-closed* if its complement is semi-open or equivalently if $Int(Cl(A)) \subseteq A$.

A generalized class of closed sets was considered by Maki in [19]. He investigated the sets that can be represented as union of closed sets and called them V-sets. Complements of V-sets, i.e., sets that are intersection of open sets are called Λ -sets [19].

Recall that a real-valued function f defined on a topological space X is called A-continuous [24] if the preimage of every open subset of R belongs to A, where A is a collection of subsets of X. Most of the definitions of function used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts the reader may refer to [5, 11]. In the recent literature many topologists had focused their research in the direction of investigating different types of generalized continuity.

J. Dontchev in [6] introduced a new class of mappings called contracontinuity. A good number of researchers have also initiated different types of contra-continuous like mappings in the papers [1, 3, 8, 9, 10, 12, 13, 23].

Hence, a real-valued function f defined on a topological space X is called *contra-continuous* (resp. *contra-semi-continuous*, *contra-precontinuous*) if the preimage of every open subset of R is closed (resp. *semi-closed*, preclosed) in X[6].

Results of Kat etov [14, 15] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [2], are used in order to give a necessary and sufficient conditions for the insertion of a contra-continuous function between two comparable realvalued functions on such topological spaces that Λ -sets or kernel of sets are open [19].

If g and f are real-valued functions defined on a space X, we write $g \le f$ (resp. g < f) in case $g(x) \le f(x)$ (resp. g(x) < f(x)) for all x in X.

The following definitions are modifications of conditions considered in [16].

A property *P* defined relative to a real-valued function on a topological space is a *cc*-*property* provided that any constant function has property *P* and provided that the sum of a function with property *P* and any contracontinuous function also has property *P*. If *P*₁ and *P*₂ are *cc*-properties, the following terminology is used:(i) A space *X* has the *weak cc*-*insertion property* for (*P*₁,*P*₂) if and only if for any functions *g* and *f* on *X* such that $g \le f,g$ has property *P*₁ and *f* has property *P*₂, then there exists a contra-continuous function *h* such that $g \le h \le f$.(ii) A space *X* has the *cc*-*insertion property* for (*P*₁,*P*₂) if and only if for any functions *g* and *f* on *X* such that $g < h \le f$.(iii) A space *X* has the *cc*-*insertion property* for (*P*₁,*P*₂) if and only if for any functions *g* and *f* on *X* such that $g < h \le f,g$ has property *P*₁ and *f* has property *P*₂, then there exists a contra-continuous function *k* such that $g < h \le f,g$ has property *P*₁ and *f* has property *P*₂, then there exists a contra-continuous function *g* and *f* on *X* such that g < h,g has property *P*₁ and *f* has property *P*₂, then there exists a contra-continuous function *h* such that g < h,g has property *P*₁ and only if for any functions *g* and *f* on *X* such that g < f,g has property *P*₁, *f* has property *P*₁, *f* has property *P*₂, then there exists a contra-continuous functions *g* and *f* on *X* such that g < f,g has property *P*₂, then there exists a contra-continuous functions *g* and *f* on *X* such that g < f,g has property *P*₂, then there exists a contra-continuous function *h* such that g < h < f,g has property *P*₂, then there exists a contra-continuous function *h* such that g < h < f,g.

In this paper, for a topological space whose Λ -sets or kernel of sets are open, is given a sufficient condition for the weak *cc*-insertion property. Also for a space with the weak *cc*-insertion property, we give a necessary and sufficient condition for the space to have the *cc*-insertion property. Several insertion theorems are obtained as corollaries of these results.

2. THE MAIN RESULT

Before giving a sufficient condition for insertability of a contra-continuous function, the necessary definitions and terminology are stated. **Definition 2.1.** Let *A* be a subset of a topological space (X,τ) . We define the subsets A^{Λ} and A^{V} as follows:

 $A^{\Lambda} = \cap \{ O : O \supseteq A, O \in (X, \tau) \} \text{ and } A^{V} = \cup \{ F : F \subseteq A, F^{c} \in (X, \tau) \}.$

In [7, 18, 22], A^{Λ} is called the *kernel* of *A*.

The family of all preopen, preclosed, *semi*-open and *semi*-closed will be denoted by $pO(X,\tau)$, $pC(X,\tau)$, $sO(X,\tau)$ and $sC(X,\tau)$, respectively.

We define the subsets $p(A^{\Lambda}), p(A^{V}), s(A^{\Lambda})$ and $s(A^{V})$ as follows: $p(A^{\Lambda}) = \bigcap \{O : O \supseteq A, O \in pO(X, \tau)\}, p(A^{V}) = \bigcup \{F : F \subseteq A, F \in pC(X, \tau)\}, s(A^{\Lambda}) = \bigcap \{O : O \supseteq A, O \in sO(X, \tau)\} \text{ and } s(A^{V}) = \bigcup \{F : F \subseteq A, F \in sC(X, \tau)\}.$ $sC(X, \tau)\}$. $p(A^{\Lambda})$ (resp. $s(A^{\Lambda})$) is called the *prekernel* (resp. *semi - kernel*) of A.

The following first two definitions are modifications of conditions considered in [14, 15].

Definition 2.2. If ρ is a binary relation in a set *S* then ρ^- is defined as follows: $x \rho^- y$ if and only if $y \rho v$ implies $x \rho v$ and $u \rho x$ implies $u \rho y$ for any u and v in *S*.

Definition 2.3. A binary relation ρ in the power set P(X) of a topological space X is called a *strong binary relation* in P(X) in case ρ satisfies each of the following conditions:

- If $A_i \rho B_j$ for any $i \in \{1,...,m\}$ and for any $j \in \{1,...,n\}$, then there exists a set *C* in *P*(*X*) such that $A_i \rho$ *C* and $C \rho B_j$ for any $i \in \{1,...,m\}$ and any $j \in \{1,...,n\}$.
- If $A \subseteq B$, then $A \rho^{-} B$.
- If $A \rho B$, then $A^{\Lambda} \subseteq B$ and $A \subseteq B^{V}$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [2] as follows:

Definition 2.4. If *f* is a real-valued function defined on a space *X* and if $\{x \in X : f(x) < `\} \subseteq A(f, `) \subseteq \{x \in X : f(x) \le `\}$ for a real number `, then A(f, `) is called a *lower indefinite cut set* in the domain of *f* at the level

We now give the following main result:

Theorem 2.1. Let *g* and *f* be real-valued functions on the topological space *X*, in which kernel sets are open, with $g \le f$. If there exists a strong binary relation ρ on the power set of *X* and if there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of *f* and *g* at the level *t* for each rational number *t* such that if $t_1 < t_2$ then $A(f,t_1) \rho A(g,t_2)$, then there exists a contra-continuous function *h* defined on *X* such that $g \le h \le f$.

Proof. Let *g* and *f* be real-valued functions defined on the *X* such that $g \le f$. By hypothesis there exists a strong binary relation ρ on the power set of *X* and there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of *f* and *g* at the level *t* for each rational number *t* such that if $t_1 < t_2$ then $A(f,t_1) \rho A(g,t_2)$.

Define functions *F* and *G* mapping the rational numbers Q into the power set of X by F(t) = A(f,t) and G(t) = A(g,t). If t_1 and t_2 are any elements of Q with $t_1 < t_2$, then $F(t_1) \rho^- F(t_2)$, $G(t_1) \rho^- G(t_2)$, and $F(t_1) \rho$ $G(t_2)$. By Lemmas 1 and 2 of [15] it follows that there exists a function *H* mapping Q into the power set of X such that if t_1 and t_2 are any rational numbers with $t_1 < t_2$, then $F(t_1) \rho H(t_2)$, $H(t_1) \rho H(t_2)$ and $H(t_1) \rho G(t_2)$. For any x in X, let $h(x) = \inf\{t \in Q : x \in H(t)\}$.

We first verify that $g \le h \le f$: If x is in H(t) then x is in $G(t^0)$ for any $t^0 > t$; since x is in $G(t^0) = A(g,t^0)$ implies that $g(x) \le t^0$, it follows that $g(x) \le t$. Hence $g \le h$. If x is not in H(t), then x is not in $F(t^0)$ for any $t^0 < t$; since x is not in $F(t^0) = A(f,t^0)$ implies that $f(x) > t^0$, it follows that $f(x) \ge t$. Hence $h \le f$.

Also, for any rational numbers t_1 and t_2 with $t_1 < t_2$, we have $h^{-1}(t_1, t_2) = H(t_2)^V \setminus H(t_1)^{\Lambda}$. Hence $h^{-1}(t_1, t_2)$ is closed in *X*, i.e., *h* is a contra-continuous function on *X*.

The above proof used the technique of theorem 1 in [14].

Theorem 2.2. Let P_1 and P_2 be cc-property and X be a space that satisfies the weak cc-insertion property for (P_1, P_2) . Also assume that g and f are functions on X such that g < f, g has property P_1 and f has property P_2 . The space X has the cc-insertion property for (P_1, P_2) if and only if there exist lower cut sets $A(f - g, 3^{-n+1})$ and there exists a decreasing sequence $\{D_n\}$ of subsets of X with empty intersection and such that for each $n, X \setminus D_n$ and $A(f - g, 3^{-n+1})$ are completely separated by contra-continuous functions.

Proof. Theorem 2.1 of [21].

3. APPLICATIONS

The abbreviations *cpc* and *csc* are used for contra-precontinuous and contra*semi*-continuous, respectively.

Before stating the consequences of theorems 2.1, 2.2, we suppose that X is a topological space whose kernel sets are open.

Corollary 3.1. If for each pair of disjoint preopen (resp. semi-open) sets

 G_1, G_2 of X, there exist closed sets F_1 and F_2 of X such that $G_1 \subseteq F_1$, $G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$ then X has the weak *cc*-insertion property for

(*cpc*,*cpc*) (resp. (*csc*,*csc*)).

Proof. Let *g* and *f* be real-valued functions defined on *X*, such that *f* and *g* are *cpc* (resp. *csc*), and $g \le f$. If a binary relation ρ is defined by $A \rho B$ in case $p(A^{\Lambda}) \subseteq p(B^{V})$ (resp. $s(A^{\Lambda}) \subseteq s(B^{V})$), then by hypothesis ρ is a strong binary relation in the power set of *X*. If t_1 and t_2 are any elements of *Q* with $t_1 < t_2$, then

 $A(f,t_1) \subseteq \{x \in X : f(x) \le t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g,t_2);$

since $\{x \in X : f(x) \le t_1\}$ is a preopen (resp. *semi*-open) set and since $\{x \in X : g(x) < t_2\}$ is a preclosed (resp. *semi*-closed) set, it follows that $p(A(f,t_1)^{\Lambda}) \subseteq p(A(g,t_2)^V)$ (resp. $s(A(f,t_1)^{\Lambda}) \subseteq s(A(g,t_2)^V)$). Hence $t_1 < t_2$ implies that $A(f,t_1) \rho A(g,t_2)$. The proof follows from Theorem 2.1.

Corollary 3.2. If for each pair of disjoint preopen (resp. semi-open) sets

 G_1, G_2 , there exist closed sets F_1 and F_2 such that $G_1 \subseteq F_1$, $G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$ then every contraprecontinuous (resp. contra-*semi*-continuous) function is contra-continuous.

Proof. Let *f* be a real-valued contra-precontinuous (resp. contra-*semi*-continuous) function defined on *X*. Set g = f, then by Corollary 3.1, there exists a contracontinuous function *h* such that g = h = f.

Corollary 3.3. If for each pair of disjoint preopen (resp. semi-open) sets

 G_1, G_2 of X, there exist closed sets F_1 and F_2 of X such that $G_1 \subseteq F_1$, $G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$ then X has the *cc*-insertion property for (*cpc*,*cpc*)

(resp. (*csc*,*csc*)).

Proof. Let *g* and *f* be real-valued functions defined on the *X*, such that *f* and *g* are *cpc* (resp. *csc*), and *g* < f. Set h = (f + g)/2, thus g < h < f, and by Corollary 3.2, since *g* and *f* are contra-continuous functions hence *h* is a contra-continuous function.

Corollary 3.4. If for each pair of disjoint subsets G_1, G_2 of X, such that G_1 is preopen and G_2 is *semi*-open, there exist closed subsets F_1 and F_2 of X such that $G_1 \subseteq F_1$, $G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$ then X have the weak *cc*-insertion property for (*cpc*,*csc*) and (*csc*,*cpc*).

Proof. Let *g* and *f* be real-valued functions defined on *X*, such that *g* is *cpc* (resp. *csc*) and *f* is *csc* (resp. *cpc*), with $g \le f$. If a binary relation ρ is defined by $A \rho B$ in case $s(A^{\Lambda}) \subseteq p(B^{V})$ (resp. $p(A^{\Lambda}) \subseteq s(B^{V})$), then by hypothesis ρ is a strong binary relation in the power set of *X*. If t_1 and t_2 are any elements of Q with $t_1 < t_2$, then

$$A(f,t_1) \subseteq \{x \in X : f(x) \le t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g,t_2);$$

since $\{x \in X : f(x) \le t_1\}$ is a *semi*-open (resp. preopen) set and since $\{x \in X : g(x) < t_2\}$ is a preclosed (resp. *semi*-closed) set, it follows that $s(A(f,t_1)^A) \subseteq p(A(g,t_2)^V)$ (resp. $p(A(f,t_1)^A) \subseteq s(A(g,t_2)^V)$). Hence $t_1 < t_2$ implies that $A(f,t_1) \rho A(g,t_2)$. The proof follows from Theorem 2.1.

Before stating consequences of Theorem 2.2, we state and prove the necessary lemmas.

Lemma 3.1. The following conditions on the space *X* are equivalent:

- For each pair of disjoint subsets G_1, G_2 of X, such that G_1 is preopen and G_2 is *semi*-open, there exist closed subsets F_1, F_2 of X such that $G_1 \subseteq F_1, G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$.
- If *G* is a *semi*-open (resp. preopen) subset of *X* which is contained in a preclosed (resp. *semi*-closed) subset *F* of *X*, then there exists a closed subset *H* of *X* such that $G \subseteq H \subseteq H^{\Lambda} \subseteq F$.

Proof. (i) \Rightarrow (ii) Suppose that $G \subseteq F$, where G and F are *semi*-open

(resp. preopen) and preclosed (resp. *semi*-closed) subsets of X, respectively. Hence, F^c is a preopen (resp. *semi*-open) and $G \cap F^c = \emptyset$.

By (i) there exists two disjoint closed subsets F_1, F_2 such that $G \subseteq F_1$ and $F^c \subseteq F_2$. But

 $F^c \subseteq F_2 \Rightarrow F_2^c \subseteq F$,

and

$$F_1 \cap F_2 = \emptyset \Rightarrow F_1 \subseteq F_2^c$$

hence

 $G \subseteq F_1 \subseteq F_2^c \subseteq F$

and since F_2^c is an open subset containing F_1 , we conclude that $F_1^{\Lambda} \subseteq F_2^c$, i.e.,

 $G \subseteq F_1 \subseteq F_1^{\Lambda} \subseteq F.$

By setting $H = F_1$, condition (ii) holds.

(ii) \Rightarrow (i) Suppose that G_1, G_2 are two disjoint subsets of X, such that G_1 is preopen and G_2 is *semi*-open.

This implies that $G_2 \subseteq G_1^c$ and G_1^c is a preclosed subset of X. Hence by (ii) there exists a closed set H such that $G_2 \subseteq H \subseteq H^{\Lambda} \subseteq G_1^c$.

But
$$H \subseteq H^{\Lambda} \Rightarrow H \cap (H^{\Lambda})^c = \emptyset$$

and

 $H^{\Lambda} \subseteq G_1^c \Rightarrow G_1 \subseteq (H^{\Lambda})^c \cdot$

Furthermore, $(H^{\Lambda})^c$ is a closed subset of *X*. Hence $G_2 \subseteq H, G_1 \subseteq (H^{\Lambda})^c$ and $H \cap (H^{\Lambda})^c = \emptyset$. This means that condition (i) holds.

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)

Lemma 3.2. Suppose that *X* is a topological space. If each pair of disjoint subsets G_1, G_2 of *X*, where G_1 is preopen and G_2 is *semi*-open, can be separated by closed subsets of *X* then there exists a contracontinuous function $h: X \to [0,1]$ such that $h(G_2) = \{0\}$ and $h(G_1) = \{1\}$.

Proof. Suppose G_1 and G_2 are two disjoint subsets of X, where G_1 is preopen and G_2 is *semi*-open. Since $G_1 \cap G_2 = \emptyset$, hence $G_2 \subseteq G_1^c$. In particular, since G_1^c is a preclosed subset of X containing the *semi*-open subset G_2 of X, by Lemma 3.1, there exists a closed subset $H_{1/2}$ such that

$$G_2 \subseteq H_{1/2} \subseteq H_{1/2}^{\Lambda} \subseteq G_1^c$$

Note that $H_{1/2}$ is also a preclosed subset of X and contains G_2 , and G_1^c is a preclosed subset of X and contains the *semi*-open subset $H_{1/2}^{\Lambda}$ of X. Hence, by Lemma 3.1, there exists closed subsets $H_{1/4}$ and

 $H_{3/4}$ such that

$$G_2 \subseteq H_{1/4} \subseteq H_{1/4}^{\Lambda} \subseteq H_{1/2} \subseteq H_{1/2}^{\Lambda} \subseteq H_{3/4} \subseteq H_{3/4}^{\Lambda} \subseteq G_1^c$$

By continuing this method for every $t \in D$, where $D \subseteq [0,1]$ is the set of rational numbers that their denominators are exponents of 2, we obtain closed subsets H_t with the property that if $t_1, t_2 \in D$ and $t_1 < t_2$, then $H_{t_1} \subseteq H_{t_2}$. We define the function h on X by $h(x) = \inf\{t : x \in H_t\}$ for $x \in G_1$ and h(x) = 1 for $x \in G_1$.

Note that for every $x \in X, 0 \le h(x) \le 1$, i.e., *h* maps *X* into [0,1]. Also, we note that for any $t \in D, G_2 \subseteq H_t$; hence $h(G_2) = \{0\}$. Furthermore, by definition, $h(G_1) = \{1\}$. It remains only to prove that *h* is a contracontinuous function on *X*. For every $\alpha \in \mathbb{R}$, we have if $\alpha \le 0$ then $\{x \in X : h(x) < \alpha\} = \emptyset$ and if $0 < \alpha$ then $\{x \in X : h(x) < \alpha\} = \bigcup \{H_t : t < \alpha\}$, hence, they are closed subsets of *X*. Similarly, if $\alpha < 0$ then $\{x \in X : h(x) > \alpha\} = X$ and if $0 \le \alpha$ then $\{x \in X : h(x) > \alpha\} = \bigcup \{H_t^{-1} : t < \alpha\}$, hence, they are closed subsets of *X*. Similarly, if $\alpha < 0$ then $\{x \in X : h(x) > \alpha\} = X$ and if $0 \le \alpha$ then $\{x \in X : h(x) > \alpha\} = \bigcup \{(H_t^{-1})^c : t > \alpha\}$ hence, every of them is a closed subset. Consequently *h* is a contra-continuous function.

Lemma 3.3. Suppose that *X* is a topological space such that every two disjoint *semi*-open and preopen subsets of *X* can be separated by closed subsets of *X*. The following conditions are equivalent:

- Every countable convering of semi-closed (resp. preclosed) subsets of X has a refinement consisting of preclosed (resp. semi-closed) subsets of X such that for every x ∈ X, there exists a closed subset of X containing x such that it intersects only finitely many members of the refinement.
- Corresponding to every decreasing sequence {Gn} of semi-open (resp. preopen) subsets of X with empty intersection there exists a decreasing sequence {Fn} of preclosed (resp. semi-closed) subsets of X such that ⋂_{n=1}[∞] F_n = Ø and for every n ∈N,Gn ⊆ Fn.

Proof. (i) \Rightarrow (ii) Suppose that $\{G_n\}$ is a decreasing sequence of *semi*-open (resp. preopen) subsets of X with empty intersection. Then $\{G_n^c : n \in \mathbb{N}\}$ is a countable covering of *semi*-closed (resp. preclosed) subsets of X. By hypothesis (i) and Lemma 3.1, this covering has a refinement $\{V_n : n \in \mathbb{N}\}$ such that every V_n is a closed subset of X and $V_n^{\Lambda} \subseteq G_n^c$. By setting $F_n = (V_n^{\Lambda})^c$, we obtain a decreasing sequence of closed subsets of X with the required properties.

(ii) \Rightarrow (i) Now if $\{H_n : n \in \mathbb{N}\}$ is a countable covering of *semi*-closed (resp. preclosed) subsets of *X*, we set $n \in \mathbb{N}, G_n = (\bigcup_{i=1}^n H_i)^c$ for . Then $\{G_n\}$ is a decreasing sequence of *semi*-open (resp. preopen) subsets of *X* with empty intersection. By (ii) there exists a decreasing sequence $\{F_n\}$ consisting of preclosed (resp. *semi*-closed) subsets of *X* such that $\bigcap_{n=1}^{\infty} F_n = \emptyset$ and for every $n \in \mathbb{N}, G_n \subseteq F_n$. Now we define the subsets W_n of *X* in the following manner:

 W_1 is a closed subset of X such that $F_1^c \subseteq W_1$ and $W_1^{\Lambda} \cap G_1 = \emptyset$.

 W_2 is a closed subset of X such that $W_1^{\Lambda} \cup F_2^c \subseteq W_2$ and $W_2^{\Lambda} \cap G_2 = \emptyset$, and so on. (By Lemma 3.1, W_n exists).

Then since $\{F_n^c : n \in \mathbb{N}\}$ is a covering for *X*, hence $\{W_n : n \in \mathbb{N}\}$ is a

covering for *X* consisting of closed sets. Moreover, we have

(i) $Wn\Lambda \subseteq Wn+1$

(ii) $F_n^c \subseteq W_n$

(iii) $Wn \subseteq Sni=1$ Hi.

Now setting $S_1 = W_1$ and for $n \ge 2$, we set $S_n = W_{n+1} \setminus W_{n-1}^{\Lambda}$.

Then since $W_{n-1}^{\Lambda} \subseteq W_n$ and $S_n \supseteq W_{n+1} \setminus W_n$, it follows that $\{S_n : n \in \mathbb{N}\}$ consists of closed sets and covers *X*. Furthermore, $S_i \cap S_j \in \emptyset$ if and only if $|i - j| \le 1$. Finally, consider the following sets:

 $S_1 \cap H_1$, $S1 \cap H2$ $S_2 \cap H_1$, $S_2 \cap H_2$, $S2 \cap H3$ $S_3 \cap H_1$, $S_3 \cap H_2$, $S_3 \cap H_3$, $S3 \cap H4$... $S_i \cap H_1$, $S_i \cap H_2$, $S_i \cap H_3$, $S_i \cap H_4$, ..., $Si \cap Hi+1$

These sets are closed sets, cover X and refine $\{H_n : n \in \mathbb{N}\}$. In addition, $S_i \cap H_j$ can intersect at most the sets in its row, immediately above, or immediately below row.

Hence if $x \in X$ and $x \in S_n \cap H_m$, then $S_n \cap H_m$ is a closed set containing x that intersects at most finitely many of sets $S_i \cap H_j$. Consequently, $\{S_i \cap H_j : i \in \mathbb{N}, j = 1, ..., i+1\}$ refines $\{H_n : n \in \mathbb{N}\}$ such that its elements are closed sets, and for every point in X we can find a closed set containing the point that intersects only finitely many elements of that refinement.

Corollary 3.5. If every two disjoint *semi*-open and preopen subsets of X can be separated by closed subsets of X, and in addition, every countable covering of *semi*-closed (resp. preclosed) subsets of X has a refinement that consists of preclosed (resp. *semi*-closed) subsets of X such that for every point of X we can find a closed subset containing that point such that it intersects only a finite number of refining members then X has the weakly cc-insertion property for (cpc, csc) (resp. (csc, cpc)).

Proof. Since every two disjoint *semi*-open and preopen sets can be separated by closed subsets of X, therefore by Corollary 3.4, X has the weak *cc*-insertion property for (*cpc,csc*) and (*csc,cpc*). Now suppose that f and g are real-valued functions on X with g < f, such that g is *cpc* (resp. *csc*), f is *csc* (resp. *cpc*) and f - g is *csc* (resp. *cpc*). For every $n \in \mathbb{N}$, set

 $A(f-g,3^{-n+1}) = \{x \in X : (f-g)(x) \le 3^{-n+1}\}.$

Since f - g is *csc* (resp. *cpc*), hence $A(f - g, 3^{-n+1})$ is a *semi*-open (resp. preopen) subset of X. Consequently, $\{A(f - g, 3^{-n+1})\}$ is a decreasing sequence of *semi*-open (resp. preopen) subsets of X and furthermore since

0 < f - g, it follows that $\bigcap_{n=1}^{\infty} A(f - g, 3^{-n+1}) = \emptyset$. Now by Lemma 3.3, there exists a decreasing sequence $\{D_n\}$ of preclosed (resp. *semi*-closed) subsets of X such that $A(f - g, 3^{-n+1}) \subseteq D_n$ and $\bigcap_{n=1}^{\infty} D_n = \emptyset$. But by Lemma

3.2, the pair $A(f-g,3^{-n+1})$ and $X \setminus D_n$ of *semi*-open (resp. preopen) and preopen (resp. *semi*-open) subsets of X can be completely separated by contra-continuous functions. Hence by Theorem 2.2, there exists a contracontinuous function h defined on X such that g < h < f, i.e., X has the weakly *cc*-insertion property for (*cpc,csc*) (resp. (*csc,cpc*)).

ACKNOWLEDGEMENT

This research was partially supported by Centre of Excellence for Mathematics (University of Isfahan).

REFERENCES

- [1] A. Al-Omari and M.S. Md Noorani, Some properties of contra-bcontinuous and almost contra-b-continuous functions, European J. Pure. Appl. Math., 2(2)(2009), 213-230.
- [2] F. Brooks, Indefinite cut sets for real functions, Amer. Math. Monthly, 78(1971), 1007-1010.

- [3] M. Caldas and S. Jafari, Some properties of contra- β -continuous functions, Mem. Fac. Sci. Kochi. Univ., 22(2001), 19-28.
- [4] H.H. Corson and E. Michael, Metrizability of certain countable unions, Illinois J. Math., 8(1964), 351-360.
- [5] J. Dontchev, The characterization of some peculiar topological space via α and β -sets, Acta Math. Hungar., 69(1-2)(1995), 67-71.
- [6] J. Dontchev, Contra-continuous functions and strongly S-closed space, Intrnat. J. Math. Math. Sci., 19(2)(1996), 303-310.
- [7] J. Dontchev, and H. Maki, On sg-closed sets and semi-λ-closed sets, Questions Answers Gen. Topology, 15(2)(1997), 259-266.
- [8] E. Ekici, On contra-continuity, Annales Univ. Sci. Bodapest, 47(2004), 127-137.
- [9] E. Ekici, New forms of contra-continuity, Carpathian J. Math., 24(1)(2008), 37-45.
- [10] A.I. El-Magbrabi, Some properties of contra-continuous mappings, Int. J. General Topol., 3(1-2)(2010), 55-64.
- [11] M. Ganster and I. Reilly, A decomposition of continuity, Acta Math. Hungar., 56(3-4)(1990), 299-301.
- [12] S. Jafari and T. Noiri, Contra-continuous function between topological spaces, Iranian Int. J. Sci., 2(2001), 153-167.
- [13] S. Jafari and T. Noiri, On contra-precontinuous functions, Bull. Malaysian Math. Sc. Soc., 25(2002), 115-128.
- [14] M. Kat'etov, On real-valued functions in topological spaces, Fund. Math., 38(1951), 85-91.
- [15] M. Kat'etov, Correction to, "On real-valued functions in topological spaces", Fund. Math., 40(1953), 203-205.
- [16] E. Lane, Insertion of a continuous function, Pacific J. Math., 66(1976), 181-190.
- [17] N. Levine, Semi-open sets and semi-continuity in topological space, Amer. Math. Monthly, 70(1963), 36-41.
- [18] S. N. Maheshwari and R. Prasad, On R_{Os}-spaces, Portugal. Math., 34(1975), 213-217.
- [19] H. Maki, Generalized Λ-sets and the associated closure operator, The special Issue in commemoration of Prof. Kazuada IKEDA's Retirement, (1986), 139-146.
- [20] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On precontinuous and weak pre-continuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [21] M. Mirmiran, Insertion of a function belonging to a certain subclass of R^X , Bull. Iran. Math. Soc., 28(2)(2002), 19-27.
- [22] M. Mrsevic, On pairwise R and pairwise R₁ bitopological spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 30(1986), 141-145.
- [23] A.A. Nasef, Some properties of contra-continuous functions, Chaos Solitons Fractals, 24(2005), 471-477.
- [24] M. Przemski, A decomposition of continuity and *a*-continuity, Acta Math. Hungar., 61(1-2)(1993), 93-98.

Citation: MAJID MIRMIRAN, (2019). Insertion of a Contra-Continuous Function between two Comparable Contra-Precontinuous (Contra-Semi–Continuous) Functions. International Journal of Scientific and Innovative Mathematical Research (IJSIMR), 7(10), pp. 34-40. http://dx.doi.org/ 10.20431/2347 - 3142.0710004

Copyright: © 2019 Authors, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.