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1. INTRODUCTION 

The concept of a preopen set in a topological space was introduced by H.H. Corson and E. Michael in 

1964 [4]. A subset A of a topological space (X,τ) is called preopen or locally dense or nearly open if A 

⊆ Int(Cl(A)). A set A is called preclosed if its complement is preopen or equivalently if Cl(Int(A)) ⊆ A. 

The term ,preopen, was used for the first time by A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-

Deeb [20], while the concept of a , locally dense, set was introduced by H.H. Corson and E. Michael [4]. 

The concept of a semi-open set in a topological space was introduced by N. Levine in 1963 [17]. A 

subset A of a topological space (X,τ) is called semiopen [10] if A ⊆ Cl(Int(A)). A set A is called semi-

closed if its complement is semi-open or equivalently if Int(Cl(A)) ⊆ A. 

A generalized class of closed sets was considered by Maki in [19]. He investigated the sets that can be 

represented as union of closed sets and called them V −sets. Complements of V −sets, i.e., sets that are 

intersection of open sets are called Λ−sets [19]. 

Recall that a real-valued function f defined on a topological space X is called A−continuous [24] if the 

preimage of every open subset of R belongs to A, where A is a collection of subsets of X. Most of the 

definitions of function used throughout this paper are consequences of the definition of A−continuity. 

However, for unknown concepts the reader may refer to [5 , 11]. In the recent literature many topologists 

had focused their research in the direction of investigating different types of generalized continuity. 

J. Dontchev in [6] introduced a new class of mappings called contracontinuity. A good number of 

researchers have also initiated different types of contra-continuous like mappings in the papers [1, 3, 8, 

9, 10, 12, 13, 23]. 

Hence, a real-valued function f defined on a topological space X is called contra-continuous (resp. 

contra-semi−continuous , contra-precontinuous) if the preimage of every open subset of R is closed 

(resp. semi−closed , preclosed) in X[6]. 

Results of Katˇetov [14, 15] concerning binary relations and the concept of an indefinite lower cut set 

for a real-valued function, which is due to Brooks [2], are used in order to give a necessary and sufficient 

conditions for the insertion of a contra-continuous function between two comparable realvalued 

functions on such topological spaces that Λ−sets or kernel of sets are open [19]. 

If g and f are real-valued functions defined on a space X, we write g ≤ f (resp. g < f) in case g(x) ≤ f(x) 

(resp. g(x) < f(x)) for all x in X. 
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The following definitions are modifications of conditions considered in [16]. 

A property P defined relative to a real-valued function on a topological space is a cc−property 
provided that any constant function has property P and provided that the sum of a function with 
property P and any contracontinuous function also has property P. If P1 and P2 are cc−properties, 
the following terminology is used:(i) A space X has the weak cc−insertion property for (P1,P2) if 
and only if for any functions g and f on X such that g ≤ f,g has property P1 and f has property P2, 
then there exists a contra-continuous function h such that g ≤ h ≤ f.(ii) A space X has the 
cc−insertion property for (P1,P2) if and only if for any functions g and f on X such that g < f,g has 
property P1 and f has property P2, then there exists a contra-continuous function h such that g < h 
< f.(iii) A space X has the weakly cc−insertion property for (P1,P2) if and only if for any functions g 
and f on X such that g < f,g has property P1 , f has property P2 and f −g has property P2, then there 
exists a contra-continuous function h such that g < h < f. 

In this paper, for a topological space whose Λ−sets or kernel of sets are open, is given a sufficient 
condition for the weak cc−insertion property. Also for a space with the weak cc−insertion 
property, we give a necessary and sufficient condition for the space to have the cc−insertion 
property. Several insertion theorems are obtained as corollaries of these results. 

2. THE MAIN RESULT 

Before giving a sufficient condition for insertability of a contra-continuous function, the necessary 

definitions and terminology are stated. Definition 2.1. Let A be a subset of a topological space (X,τ). 

We define the subsets AΛ and AV as follows: 

AΛ = ∩{O : O ⊇ A,O ∈ (X,τ)} and AV = ∪{F : F ⊆ A,Fc ∈ (X,τ)}. 

In [7, 18, 22], AΛ is called the kernel of A. 

The family of all preopen, preclosed, semi−open and semi−closed will be denoted by pO(X,τ), pC(X,τ), 

sO(X,τ) and sC(X,τ), respectively. 

We define the subsets p(AΛ),p(AV ),s(AΛ) and s(AV ) as follows: p(AΛ) = ∩{O : O ⊇ A,O ∈ pO(X,τ)}, 

p(AV ) = ∪{F : F ⊆ A,F ∈ pC(X,τ)}, s(AΛ) = ∩{O : O ⊇ A,O ∈ sO(X,τ)} and s(AV ) = ∪{F : F ⊆ A,F ∈ 

sC(X,τ)}. p(AΛ) (resp. s(AΛ)) is called the prekernel (resp. semi − kernel) of A. 

The following first two definitions are modifications of conditions considered in [14, 15]. 

Definition 2.2. If ρ is a binary relation in a set S then ρ¯ is defined as follows: x ρ¯ y if and only if y ρ 

v implies x ρ v and u ρ x implies u ρ y for any u and v in S. 

Definition 2.3. A binary relation ρ in the power set P(X) of a topological space X is called a strong 

binary relation in P(X) in case ρ satisfies each of the following conditions: 

 If Ai ρ Bj for any i ∈{1,...,m} and for any j ∈{1,...,n}, then there exists a set C in P(X) such that Ai ρ 

C and C ρ Bj for any i ∈{1,...,m} and any j ∈{1,...,n}. 

 If A ⊆ B, then A ρ¯ B. 

 If A ρ B, then AΛ ⊆ B and A ⊆ BV . 

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [2] as follows: 

Definition 2.4. If f is a real-valued function defined on a space X and if {x ∈ X : f(x) < `}⊆ A(f,`) ⊆{x 

∈ X : f(x) ≤ `} for a real number `, then A(f,`) is called a lower indefinite cut set in the domain of f at the 

level 

We now give the following main result: 

Theorem 2.1. Let g and f be real-valued functions on the topological space X, in which kernel sets are 

open, with g ≤ f. If there exists a strong binary relation ρ on the power set of X and if there exist lower 

indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number t such 

that if t1 < t2 then A(f,t1) ρ A(g,t2), then there exists a contra-continuous function h defined on X such 

that g ≤ h ≤ f. 



Insertion of a Contra-Continuous Function between two Comparable Contra-Precontinuous (Contra-

Semi−Continuous) Functions  

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                       Page | 36 

Proof. Let g and f be real-valued functions defined on the X such that g ≤ f. By hypothesis there exists 

a strong binary relation ρ on the power set of X and there exist lower indefinite cut sets A(f,t) and A(g,t) 

in the domain of f and g at the level t for each rational number t such that if t1 < t2 then A(f,t1) ρ A(g,t2). 

Define functions F and G mapping the rational numbers Q into the power set of X by F(t) = A(f,t) and 

G(t) = A(g,t). If t1 and t2 are any elements of Q with t1 < t2, then F(t1) ρ¯ F(t2),G(t1) ρ¯ G(t2), and F(t1) ρ 

G(t2). By Lemmas 1 and 2 of [15] it follows that there exists a function H mapping Q into the power set 

of X such that if t1 and t2 are any rational numbers with t1 < t2, then F(t1) ρ H(t2),H(t1) ρ H(t2) and H(t1) 

ρ G(t2). For any x in X, let h(x) = inf{t ∈Q : x ∈ H(t)}. 

We first verify that g ≤ h ≤ f: If x is in H(t) then x is in G(t0) for any t0 > t; since x is in G(t0) = A(g,t0) 

implies that g(x) ≤ t0, it follows that g(x) ≤ t. Hence g ≤ h. If x is not in H(t), then x is not in F(t0) for 

any t0 < t; since x is not in F(t0) = A(f,t0) implies that f(x) > t0, it follows that f(x) ≥ t. Hence h ≤ f. 

Also, for any rational numbers t1 and t2 with t1 < t2, we have h−1(t1,t2) = H(t2)
V \H(t1)Λ. Hence h−1(t1,t2) is 

closed in X, i.e., h is a contra-continuous function on X.  

The above proof used the technique of theorem 1 in [14]. 

Theorem 2.2. Let P1 and P2 be cc−property and X be a space that satisfies the weak cc−insertion 

property for (P1,P2). Also assume that g and f are functions on X such that g < f,g has property P1 and f 

has property P2.The space X has the cc−insertion property for (P1,P2) if and only if there exist lower cut 

sets A(f − g,3−n+1) and there exists a decreasing sequence {Dn} of subsets of X with empty intersection 

and such that for each n,X \Dn and A(f − g,3−n+1) are completely separated by contra-continuous 

functions. 

Proof. Theorem 2.1 of [21]. 

3. APPLICATIONS 

The abbreviations cpc and csc are used for contra-precontinuous and contrasemi−continuous, 

respectively. 

Before stating the consequences of theorems 2.1, 2.2, we suppose that X is a topological space whose 

kernel sets are open. 

Corollary 3.1. If for each pair of disjoint preopen (resp. semi−open) sets 

G1,G2 of X , there exist closed sets F1 and F2 of X such that G1 ⊆ F1, G2 ⊆ F2 and F1 ∩ F2 = ∅ then X has 

the weak cc−insertion property for 

(cpc,cpc) (resp. (csc,csc)). 

Proof. Let g and f be real-valued functions defined on X, such that f and g are cpc (resp. csc), and g ≤ 

f.If a binary relation ρ is defined by A ρ B in case p(AΛ) ⊆ p(BV ) (resp. s(AΛ) ⊆ s(BV )), then by hypothesis 

ρ is a strong binary relation in the power set of X. If t1 and t2 are any elements of Q with t1 < t2, then 

A(f,t1) ⊆{x ∈ X : f(x) ≤ t1}⊆{x ∈ X : g(x) < t2}⊆ A(g,t2) ; 

since {x ∈ X : f(x) ≤ t1} is a preopen (resp. semi−open) set and since {x ∈ X : g(x) < t2} is a preclosed 

(resp. semi−closed) set, it follows that p(A(f,t1)Λ) ⊆ p(A(g,t2)
V ) (resp. s(A(f,t1)Λ) ⊆ s(A(g,t2)

V )). Hence 

t1 < t2 implies that A(f,t1) ρ A(g,t2). The proof follows from Theorem 2.1.  

Corollary 3.2. If for each pair of disjoint preopen (resp. semi−open) sets 

G1,G2, there exist closed sets F1 and F2 such that G1 ⊆ F1, G2 ⊆ F2 and F1∩F2 = ∅ then every contra-

precontinuous (resp. contra-semi−continuous) function is contra-continuous. 

Proof. Let f be a real-valued contra-precontinuous (resp. contra-semi−continuous) function defined on 

X. Set g = f, then by Corollary 3.1, there exists a contracontinuous function h such that g = h = f. 

Corollary 3.3. If for each pair of disjoint preopen (resp. semi−open) sets 

G1,G2 of X , there exist closed sets F1 and F2 of X such that G1 ⊆ F1, G2 ⊆ F2 and F1∩F2 = ∅ then X has 

the cc−insertion property for (cpc,cpc) 



Insertion of a Contra-Continuous Function between two Comparable Contra-Precontinuous (Contra-

Semi−Continuous) Functions  

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                       Page | 37 

(resp. (csc,csc)). 

Proof. Let g and f be real-valued functions defined on the X, such that f and g are cpc (resp. csc), and g 

< f. Set h = (f + g)/2, thus g < h < f, and by Corollary 3.2, since g and f are contra-continuous functions 

hence h is a contra-continuous function. 

Corollary 3.4. If for each pair of disjoint subsets G1,G2 of X , such that G1 is preopen and G2 is 

semi−open, there exist closed subsets F1 and F2 of X such that G1 ⊆ F1, G2 ⊆ F2 and F1 ∩ F2 = ∅ then X 

have the weak cc−insertion property for (cpc,csc) and (csc,cpc). 

Proof. Let g and f be real-valued functions defined on X, such that g is cpc (resp. csc) and f is csc (resp. 

cpc), with g ≤ f.If a binary relation ρ is defined by A ρ B in case s(AΛ) ⊆ p(BV ) (resp. p(AΛ) ⊆ s(BV )), 

then by hypothesis ρ is a strong binary relation in the power set of X. If t1 and t2 are any elements of Q 

with t1 < t2, then 

A(f,t1) ⊆{x ∈ X : f(x) ≤ t1}⊆{x ∈ X : g(x) < t2}⊆ A(g,t2) ; 

since {x ∈ X : f(x) ≤ t1} is a semi−open (resp. preopen) set and since {x ∈ X : g(x) < t2} is a preclosed 

(resp. semi−closed) set, it follows that s(A(f,t1)Λ) ⊆ p(A(g,t2)
V ) (resp. p(A(f,t1)Λ) ⊆ s(A(g,t2)

V )). Hence 

t1 < t2 implies that A(f,t1) ρ A(g,t2). The proof follows from Theorem 2.1.  

Before stating consequences of Theorem 2.2, we state and prove the necessary lemmas. 

Lemma 3.1. The following conditions on the space X are equivalent: 

 For each pair of disjoint subsets G1,G2 of X, such that G1 is preopen and G2 is semi−open, there 

exist closed subsets F1,F2 of X such that G1 ⊆ F1,G2 ⊆ F2 and F1 ∩ F2 = ∅. 

 If G is a semi−open (resp. preopen) subset of X which is contained in a preclosed (resp. 

semi−closed) subset F of X, then there exists a closed subset H of X such that G ⊆ H ⊆ HΛ ⊆ F. 

Proof. (i) ⇒ (ii) Suppose that G ⊆ F, where G and F are semi−open 

(resp. preopen) and preclosed (resp. semi−closed) subsets of X, respectively. Hence, Fc is a preopen 

(resp. semi−open) and G ∩ Fc = ∅. 

By (i) there exists two disjoint closed subsets F1,F2 such that G ⊆ F1 and Fc ⊆ F2. But 

 

and 

 

hence 

 

and since  is an open subset containing F1, we conclude that , i.e., 

 

By setting H = F1, condition (ii) holds. 

(ii) ⇒ (i) Suppose that G1,G2 are two disjoint subsets of X, such that G1 is preopen and G2 is semi−open. 

This implies that  and  is a preclosed subset of X. Hence by (ii) there exists a closed set H 

such that . 

But H ⊆ HΛ ⇒ H ∩ (HΛ)c = ∅ 

and 

. 

Furthermore, (HΛ)c is a closed subset of X. Hence G2 ⊆ H,G1 ⊆ (HΛ)c and H ∩ (HΛ)c = ∅. This means 

that condition (i) holds. 
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Lemma 3.2. Suppose that X is a topological space. If each pair of disjoint subsets G1,G2 of X, where G1 

is preopen and G2 is semi−open, can be separated by closed subsets of X then there exists a contra-

continuous function h : X → [0,1] such that h(G2) = {0} and h(G1) = {1}. 

Proof. Suppose G1 and G2 are two disjoint subsets of X, where G1 is preopen and G2 is semi−open. Since 

G1 ∩ G2 = ∅, hence . In particular, since  is a preclosed subset of X containing the 

semi−open subset G2 of X,by Lemma 3.1, there exists a closed subset H1/2 such that 

. 

Note that H1/2 is also a preclosed subset of X and contains  is a preclosed subset of X and 

contains the semi−open subset . Hence, by Lemma 3.1, there exists closed subsets H1/4 and 

H3/4 such that 

. 

By continuing this method for every t ∈ D, where D ⊆ [0,1] is the set of rational numbers that their 

denominators are exponents of 2, we obtain closed subsets Ht with the property that if t1,t2 ∈ D and t1 < 

t2, then Ht1 ⊆ Ht2. We define the function h on X by h(x) = inf{t : x ∈ Ht} for x 6∈ G1 and h(x) = 1 for x 

∈ G1. 

Note that for every x ∈ X,0 ≤ h(x) ≤ 1, i.e., h maps X into [0,1]. Also, we note that for any t ∈ D,G2 ⊆ 

Ht; hence h(G2) = {0}. Furthermore, by definition, h(G1) = {1}. It remains only to prove that h is a 

contracontinuous function on X. For every α ∈R, we have if α ≤ 0 then {x ∈ X : h(x) < α} = ∅ and if 0 

< α then {x ∈ X : h(x) < α} = ∪{Ht : t < α}, hence, they are closed subsets of X. Similarly, if α < 0 then 

{x ∈ X : h(x) > α} = X and if 0 ≤ α then {x ∈ X : h(x) > α} = ∪{(Ht
Λ)c : t > α} hence, every of them is a 

closed subset. Consequently h is a contra-continuous function.  

Lemma 3.3. Suppose that X is a topological space such that every two disjoint semi−open and preopen 

subsets of X can be separated by closed subsets of X. The following conditions are equivalent: 

 Every countable convering of semi−closed (resp. preclosed) subsets of X has a refinement 

consisting of preclosed (resp. semi−closed) subsets of X such that for every x ∈ X, there exists a 

closed subset of X containing x such that it intersects only finitely many members of the 

refinement. 

 Corresponding to every decreasing sequence {Gn} of semi−open ( resp. preopen) subsets of X 

with empty intersection there exists a decreasing sequence {Fn} of preclosed (resp. semi−closed) 

subsets of X such that  and for every n ∈N,Gn ⊆ Fn. 

Proof. (i) ⇒ (ii) Suppose that {Gn} is a decreasing sequence of semi−open (resp. preopen) subsets of X 

with empty intersection. Then   is a countable covering of semi−closed (resp. preclosed) 

subsets of X . By hypothesis (i) and Lemma 3.1, this covering has a refinement {Vn : n ∈N} such that 

every Vn is a closed subset of X and . By setting , we obtain a decreasing sequence 

of closed subsets of X with the required properties. 

(ii) ⇒ (i) Now if {Hn : n ∈N} is a countable covering of semi−closed (resp. preclosed) subsets of X, we 

set for . Then {Gn} is a decreasing sequence of semi−open (resp. preopen) 

subsets of X with empty intersection. By (ii) there exists a decreasing sequence {Fn} consisting of 

preclosed (resp. semi−closed) subsets of X such that   and for every n ∈N,Gn ⊆ Fn.Now 

we define the subsets Wn of X in the following manner: 

W1 is a closed subset of X such that  and . 

W2 is a closed subset of X such that  and , and so on. (By Lemma 3.1, 

Wn exists). 

Then since  is a covering for X, hence {Wn : n ∈N} is a 

covering for X consisting of closed sets. Moreover, we have 
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(i) WnΛ ⊆ Wn+1 

(ii) Fn
c ⊆ Wn 

(iii) Wn ⊆Sni=1 Hi. 

Now setting S1 = W1 and for n ≥ 2, we set . 

Then since and Sn ⊇ Wn+1\Wn, it follows that {Sn : n ∈N} consists of closed sets and covers 

X. Furthermore, Si ∩Sj 6= ∅ if and only if |i − j|≤ 1. Finally, consider the following sets: 

S1 ∩ H1, S1 ∩ H2     

S2 ∩ H1, S2 ∩ H2, S2 ∩ H3    

S3 ∩ H1, 

... 

S3 ∩ H2, S3 ∩ H3, S3 ∩ H4   

Si ∩ H1, Si ∩ H2, Si ∩ H3, Si ∩ H4, ···, Si ∩ Hi+1 

These sets are closed sets, cover X and refine {Hn : n ∈N}. In addition, Si ∩ Hj can intersect at most the 

sets in its row, immediately above, or immediately below row. 

Hence if x ∈ X and x ∈ Sn ∩ Hm, then Sn ∩ Hm is a closed set containing x that intersects at most finitely 

many of sets Si ∩ Hj. Consequently, {Si ∩Hj : i ∈N,j = 1,...,i+1} refines {Hn : n ∈N} such that its elements 

are closed sets, and for every point in X we can find a closed set containing the point that intersects only 

finitely many elements of that refinement. 

Corollary 3.5. If every two disjoint semi−open and preopen subsets of X can be separated by closed 

subsets of X, and in addition, every countable covering of semi−closed (resp. preclosed) subsets of X 

has a refinement that consists of preclosed (resp. semi−closed) subsets of X such that for every point of 

X we can find a closed subset containing that point such that it intersects only a finite number of refining 

members then X has the weakly cc−insertion property for (cpc,csc) (resp. (csc,cpc)). 

Proof. Since every two disjoint semi−open and preopen sets can be separated by closed subsets of X, 

therefore by Corollary 3.4, X has the weak cc−insertion property for (cpc,csc) and (csc,cpc). Now 

suppose that f and g are real-valued functions on X with g < f, such that g is cpc (resp. csc) , f is csc 

(resp. cpc) and f − g is csc (resp. cpc). For every n ∈N, set 

A(f − g,3−n+1) = {x ∈ X : (f − g)(x) ≤ 3−n+1}. 

Since f − g is csc (resp. cpc), hence A(f − g,3−n+1) is a semi−open ( resp. preopen) subset of X. 

Consequently, {A(f − g,3−n+1)} is a decreasing sequence of semi−open (resp. preopen) subsets of X and 

furthermore since 

0 < f−g, it follows that . Now by Lemma 3.3, there exists a decreasing 

sequence {Dn} of preclosed (resp. semi−closed) subsets of X such that A(f − g,3−n+1) ⊆ Dn and 

. But by Lemma 

3.2, the pair A(f −g,3−n+1) and X \Dn of semi−open (resp. preopen) and preopen (resp. semi−open) subsets 

of X can be completely separated by contra-continuous functions. Hence by Theorem 2.2, there exists 

a contracontinuous function h defined on X such that g < h < f, i.e., X has the weakly cc−insertion 

property for (cpc,csc) (resp. (csc,cpc)). 
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