Family of Circulant Graphs without Cayley Isomorphism Property with $\boldsymbol{m}_{\boldsymbol{i}}=5$

V. Vilfred ${ }^{*}$
Department of Mathematics
St.Jude's College, Thoothoor - 629176
Kanyakumari District, Tamil Nadu, India. vilfredkamal@gmail.com

P. Wilson
Department of Mathematics
S.T. Hindu College, Nagercoil - 629002
Kanyakumari District, Tamil Nadu, India. wilsonperapras@gmail.com

Abstract

A circulant graph $C_{n}(R)$ is said to have the Cayley Isomorphism (CI) property if whenever $C_{n}(S)$ is isomorphic to $C_{n}(R)$, there is some $a \in Z_{n}^{*}$ for which $S=a R$. It is known that (i) for $2 \leq n, 3 \leq k, 1 \leq 2 s-1 \leq 2 n-1$, $n \neq 2 s-1, R=\left\{2 s-1,4 n-(2 s-1), 2 p_{1}, 2 p_{2}, \ldots, 2 p_{k-2}\right\}$ and $S=\left\{2 n-(2 s-1), 2 n+2 s-1,2 p_{1}, 2 p_{2}, \ldots, 2 p_{k-2}\right\}$, circulant graphs $C_{8_{n}}(R)$ and $C_{8_{n}}(S)$ are without Cl-property with $m_{i}=2$ and (ii) for $1 \leq n, 3 \leq k, R=\{1,9 n-1,9 n+1$, $\left.3 p_{1}, 3 p_{2}, \ldots, 3 p_{k-2}\right\}, S=\left\{3 n+1,6 n-1,12 n+1,3 p_{1}, 3 p_{2}, \ldots, 3 p_{k-2}\right\}$ and $T=\left\{3 n-1,6 n+1,12 n-1,3 p_{1}, 3 p_{2}, \ldots, 3 p_{k-2}\right\}$, circulant graphs $C_{27 n}(R), C_{27 n}(S)$ and $C_{27 n}(T)$ are without CI-property $m_{i}=3$ where $\operatorname{gcd}\left(p_{1}, p_{2}, \ldots, p_{k-2}\right)=1$ and $n, s, p_{l}, p_{2}, \ldots, p_{k-2} \in N$. In this paper, we prove that for $1 \leq n, 3 \leq k, 1 \leq i \leq 5, d_{i}=5 n(i-1)+1$ and $R_{i}=\left\{5, d_{i}, 25 n-\right.$ $\left.d_{i}, 25 n+d_{i}, 50 n-d_{i}, 50 n+d_{i}, 5 p_{1}, 5 p_{2}, \ldots, 5 p_{k-2}\right\}$, circulant graphs $C_{125 n}\left(R_{i}\right)$ are without Cl-property $m_{j}=5$ where $m_{j}=\operatorname{gcd}\left(n, r_{j}\right), r_{j} \in R_{i}, g c d\left(p_{1}, p_{2}, \ldots, p_{k-2}\right)=1$ and $n, p_{1}, p_{2}, \ldots, p_{k-2} \in N$.

AMS Subject Classification: 05C60, 05C25.
Keywords:Type-1 isomorphism, Type-2 isomorphism, Cayley Isomorphism (CI) property, symmetric equidistance condition, abelian groups $A d_{125 n}\left(C_{125 n}(R)\right.$, o) and $\left(V_{125 n, 5}\left(C_{125 n}(R)\right)\right.$, o), Type-1 group of $C_{125 n}(R)$, Type- 2 group on $C_{125 n}(R)$ w.r.t. $r=5$.
*Research supported in part by Lerroy Wilson Foundation, India (www.WillFoundation.co.in).

1 Introduction

Circulant graphs have been investigated by many authors [1]-[9]. An excellent account can be found in the book by Davis [2] and in [4].

Through-out this paper, for a set $R=\left\{r_{1}, r_{2}, \ldots, r_{k}\right\}, C_{n}(R)$ denotes circulant graph $C_{n}\left(r_{1}, r_{2}, \ldots, r_{k}\right)$ where $1 \leq r_{1}<r_{2}<\cdots<r_{k} \leq[n / 2]$. We consider only connected circulant graphs of finite order, $V\left(C_{n}(R)\right)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ with v_{i} adjacent to v_{i+r} for each $r \in R$, subscript addition taken modulo n and all cycles have length at least 3 , unless otherwise specified, $0 \leq i \leq n-1$. However when $\frac{n}{2} \in R$, edge $v_{i} v_{i+\frac{n}{2}}$ is taken as a single edge for considering the degree of the vertex v_{i} or $v_{i+\frac{n}{2}}$ and as a double edge while counting the number of edges or cycles in $C_{n}(R), 0 \leq i \leq n-1$. Circulant graph is also defined as a Cayley graph or digraph of a cyclic group. If a graph G is circulant, then its adjacency matrix $A(G)$ is circulant. It follows that if the first row of the adjacency matrix of a circulant graph is $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$, then $a_{1}=0$ and $a_{i}=a_{n-i+2}, 2 \leq i \leq n$ [2], [8]. We will often assume, with-out further comment, that the vertices are the corners of a regular n-gon, labeled clockwise. Circulant graphs $C_{16}(1,2,7)$ and $C_{16}(2,3,5)$ are shown in Figures 1 and 2, respectively.
THEOREM $1.1[8] I f C_{n}(R) \cong C_{n}(S)$, then there is a bijectionffromRtoSso that for allr $\in R, \operatorname{gcd}(n, r)=$ $g c d(n, f(r))$.

DEFINITION 1.2 [5] A circulant graph $C_{n}(R)$ is said to have the CI-property if whenever $C_{n}(S)$ is isomorphic to $C_{n}(R)$, there is some $a \in Z_{n}^{*}$ for which $S=a R$.

LEMMA 1.3 [8] Let S be a non-empty subset of Z_{n} and $x \in Z_{n}$. Define a mapping $\Phi_{n, x}: S \rightarrow Z_{n}$ such that $\Phi_{n, x}(s)=$ xsfor every $s \in$ Sunder multiplication modulo n. Then $\Phi_{n, x}$ is bijective if and only ifS $=$ $Z_{n} \operatorname{andg} c d(n, x)=1$.

DEFINITION 1.4 [1] Circulant graphs, $C_{n}(R)$ and $C_{n}(S)$ for $R=\left\{r_{1}, r_{2}, \ldots, r_{k}\right\}$ and $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ are Adam's isomorphicif there exists a positive integer x relatively prime to n with $S=\left\{x r_{1}, x r_{2}, \ldots, x r_{k}\right\}_{n}^{*}$ where $<r_{i}>_{n}^{*}$, the reflexive modular reductionof a sequence $\left.<r_{i}\right\rangle$ is the sequence obtained by reducing each r_{i} modulo n to yield r_{i}^{\prime} and then replacing all resulting terms r_{i}^{\prime} which are larger than $\frac{n}{2}$ by $n-r_{i}^{\prime}[1]$.

LEMMA 1.5 [8]Let $j, m, q, r, t, x \in Z_{n} \operatorname{such}$ thatgcd(n, $\left.r\right)=m>1, x=j+q m, 0 \leq j \leq m-1$ and $0 \leq q, t \leq \frac{n}{m}-1$. Then the mapping $\theta_{n, r, t}: Z_{n} \rightarrow Z_{n}$ defined by $\theta_{n, r, t}(x)=x+j$ tmfor every $x \in Z_{n}$ under arithmetic modulo n is bijective.

THEOREM $1.6[8]$ Let $V\left(C_{n}(R)\right)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}\right\}, \quad V\left(K_{n}\right)=\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{n-}\right.$ $\left.{ }_{1}\right\}, r \in \operatorname{Randj}, m, q, t, x \in Z_{n}$ such thatgcd $(n, r)=m>1, x=j+q m, 0 \leq j \leq m-1$ and $0 \leq q, t \leq \frac{n}{m}-1$. Then the mapping $\theta_{n, r, t}: \quad V\left(C_{n}(R)\right) \quad \rightarrow V\left(C_{n}(1,2, \ldots, n-1)\right) \quad=\quad V\left(K_{n}\right)$ defined by $\theta_{n, r, t}\left(v_{x}\right) \quad=$ $u_{x+j t m}$ and $\theta_{n, r, t}\left(\left(v_{x}, v_{x+s}\right)\right)=\left(\theta_{n, r, t}\left(v_{x}\right), \theta_{n, r, t}\left(v_{x+s}\right)\right)$ for everyx $\in Z_{n}$ ands $\in R$, under subscript arithmetic modulo n, for a set $R=\left\{r_{1}, r_{2}, \ldots, r_{k}, \mathrm{n}-r_{k}, n-r_{k-1}, \ldots, r_{1}\right\}$ is one-to-one, preserves adjacency and $\theta_{n, r, t}\left(C_{n}(R)\right) \cong C_{n}(R)$ for $t=0,1,2, \ldots, \frac{n}{m}-1$.

DEFINITION 1.7 [8] Let $V\left(C_{n}(R)\right)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}\right\}, V\left(K_{n}\right)=\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{n-1}\right\}, r \in R$ and $j, m, q, t, x \in Z_{n}$ such that $\operatorname{gcd}(n, r)=m>1, x=j+q m, 0 \leq j \leq m-1$ and $0 \leq q, t \leq \frac{n}{m}-1$. Define one-to-one mapping $\theta_{n, r, t}: V\left(C_{n}(R)\right) \rightarrow V\left(K_{n}\right)$ such that $\theta_{n, r, t}\left(v_{x}\right)=u_{x+j t m}$ and $\theta_{n, r, t}\left(\left(v_{x}, v_{x+s}\right)\right)=$ $\left(\theta_{n, r, t}\left(v_{x}\right), \theta_{n, r, t}\left(v_{x+s}\right)\right)$ for every $x \in Z_{n}$ and $s \in R$, under subscript arithmetic modulo n. And if for a particular value of $t, \theta_{n, r, t}\left(C_{n}(R)\right)=C_{n}(S)$ for some $S \subseteq[1,[n / 2]]$ and $S \neq x R$ for all $x \in \Phi_{n}$ under reflexive modulo n, then $C_{n}(R)$ and $C_{n}(S)$ are called Type-2isomorphiccirculant graphs w.r.t. r.
DEFINITION 1.8 [8] The symmetric equidistance condition with respect to v_{i} in $C_{n}(R)$ for a set $R=$ $\left\{r_{1}, r_{2}, \ldots, r_{k}\right\}$ is that v_{i+j} is adjacent to v_{i} if and only if v_{n-j+i} is adjacent to v_{i}, using subscript arithmetic modulo $n, 0 \leq i, j \leq n-1$.
THEOREM 1.9 [8]For a $\operatorname{set} R=\left\{r_{1}, r_{2}, \ldots, r_{k}\right\} \subseteq[1, \mathrm{n} / 2], 1 \leq i \leq k a n d 0 \leq t \leq \frac{n}{m}-1, \theta_{n, r_{i}, t}\left(C_{n}(R)\right)=$ $C_{n}(S)$ for some $S \subseteq[1, n / 2]$ if and only if $\theta_{n, r_{i}, t}\left(C_{n}(R)\right)$ satisfies the symmetric equidistance condition w.r.t. v_{0}.

THEOREM 1.10 [8]For $2 \leq n, 3 \leq k, 1 \leq 2 s-1 \leq 2 n-1, n \neq 2 s-1, R=\left\{2 s-1,4 n-2 s+1,2 p_{1}, 2 p_{2}, \ldots, 2 p_{k-2}\right\}$ and $S=\left\{2 n-2 s+1,2 n+2 s-1,2 p_{1}, 2 p_{2}, \ldots, 2 p_{k-2}\right\}$, circulant graphs $C_{8 n}(R)$ and $C_{8 n}(S)$ are Type- 2 isomorphic and without CI-property wheregcd $\left(p_{1}, p_{2}, \ldots, p_{k-2}\right)=1$ andn,s, $p_{1}, p_{2}, \ldots, p_{k-2} \in N$.

THEOREM $1.11[9]$ For $3 \leq k, R=\left\{1,9 n-1,9 n+1,3 p_{1}, 3 p_{2}, \ldots, 3 p_{k-2}\right\}, S=\{3 n+1,6 n-1,12 n+1$, $\left.3 p_{1}, 3 p_{2}, \ldots, 3 p_{k-2}\right\}$ and $T=\left\{3 n-1,6 n+1,12 n-1,3 p_{1}, 3 p_{2}, \ldots, 3 p_{k-2}\right\}, C_{8 n}(R)$ and $C_{8 n}(S)$ are Type-2 isomorphic and without CI-property wheregcd $\left(p_{1}, p_{2}, \ldots, p_{k-2}\right)=1$ andn, $p_{1}, p_{2}, \ldots, p_{k-2} \in N$.

THEOREM 1.12 [8]For $R=\left\{2,2 s-1,2 s^{\prime}-1\right\}, 1 \leq t \leq\left[\frac{n}{2}\right], 1 \leq 2 s-1<2 s^{\prime}-1 \leq\left[\frac{n}{2}\right]$ and $n, s, s^{\prime}, t \in N$, if $C_{n}(R)$ and $\theta_{n, 2, t}\left(C_{n}(R)\right)$ are Type- 2 isomorphic circulant graphs for somet, thenn $\equiv 0(\bmod 8)$, $2 s-1+2 s^{\prime}-1=\frac{n}{2}, t=\frac{n}{8} \operatorname{or} \frac{3 n}{8}, 2 s^{\prime}-1 \neq \frac{n}{8}, 1 \leq 2 s-1 \leq \frac{n}{4}$ and $16 \leq n$.

THEOREM 1.13 [8] Let $x \in Z_{n}$. Define mapping $\Phi_{n, x}: V\left(C_{n}(R)\right) \rightarrow V\left(K_{n}\right)$ for a set $R=\left\{r_{1}, r_{2}, \ldots, r_{k}, n-\right.$ $\left.r_{k}, n-r_{k-1}, \ldots, n-r_{1}\right\}$ such that $\Phi_{n, x}\left(v_{i}\right)=u_{x i} \operatorname{and} \Phi_{n, x}\left(\left(v_{i}, v_{i+s}\right)\right)=\left(\Phi_{n, x}\left(v_{i}\right), \quad \Phi_{n, x}\left(v_{i+s}\right)\right)$ forevery $s \in$ Randi $\in Z_{n}$ under subscript arithmetic modulo n where $V\left(C_{n}(R)\right)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and $V\left(K_{n}\right)=$ $\left\{u_{0}, u_{1}, \ldots\right.$,
$\left.u_{n-1}\right\}$. Then $\Phi_{n, x}\left(C_{n}(R)\right)=C_{n}(x R)$ and the mapping $\Phi_{n, x}$ is one-to-one if and only if $g c d(n, x)=1$.
DEFINITION 1.14 [8] Let $\operatorname{Ad}_{n}\left(C_{n}(R)\right)=T 1_{n}\left(C_{n}(R)\right)=\left\{\Phi_{n, x}\left(C_{n}(R)\right): x \in \Phi_{n}\right\}=\left\{C_{n}(x R) / x \in \Phi_{n}\right\}$ for a set $R=\left\{r_{1}, r_{2}, \ldots, r_{k}, n-r_{k}, n-r_{k-1}, \ldots, n-r_{1}\right\}$.Define 'o' in $A d_{n}\left(C_{n}(R)\right)$ such that $\Phi_{n, x}\left(C_{n}(R)\right)$ o $\Phi_{n, y}\left(C_{n}(R)\right)=\Phi_{n, x y}\left(C_{n}(R)\right)$ and $C_{n}(x R)$ o $C_{n}(y R)=C_{n}((x y) R)$ for every $x, y \in \Phi_{n}$, under arithmetic modulo n. Clearly, $A d_{n}\left(C_{n}(R)\right)=\left(T 1_{n}\left(C_{n}(R)\right)\right.$, o)is the set of all circulant graphs which are Adam's
isomorphic to $C_{n}(R) \operatorname{and}\left(A d_{n}\left(C_{n}(R)\right)\right.$, o)is an abelian group calledtheAdam's group ortheType- 1 group on $C_{n}(R)$ under 'o'.

DEFINITION 1.15 [8] Let S be a non-empty subset of $Z_{n}, r \in S, m, q, t, t^{\prime}, x \in Z_{n}$ such that $\operatorname{gcd}(n, r)=$ $m>1, x=j+q m, 0 \leq j \leq m-1$ and $0 \leq q, t, t^{\prime} \leq \frac{n}{m}-1$. Define $\theta_{n, r, t}: Z_{n} \rightarrow Z_{n}$ such that $\theta_{n, r, t}(x)=x+j t m f o r$ every $x \in Z_{n}$ under arithmetic modulo $n, V_{n, r}=\left\{\theta_{n, r, t}: t=0,1, \ldots, \frac{n}{m}-1\right\}$ and for $s \in Z_{n}, V_{n, r}(s)=$ $\left\{\theta_{n, r, t}(s): t=0,1, \ldots, \frac{n}{m}-1\right\}$ and $V_{n, r}(S)=\left\{V_{n, r}(s): s \in S\right\}$. Define 'o' in $V_{n, r}$ such that $\theta_{n, r, t} o \theta_{n, r, t}=$ $\theta_{n, r, t+t}$ and $\left(\theta_{n, r, t} o \theta_{n, r, t}\right)(x)\left(=\theta_{n, r, t}\left(\theta_{n, r, t \prime}(x)\right)=\theta_{n, r, t}\left(x+j t^{\prime} m\right)=\left(x+j t^{\prime} m\right)+j t m=x+j\left(t+t^{\prime}\right) m\right)=$ $\theta_{n, r, t+t^{\prime}}(x)$ where $t+t^{\prime}$ is calculated under addition modulo $\frac{n}{m}$. Clearly, for every $s \in Z_{n},\left(V_{n, r}(s)\right.$, o)is an abelian group.

DEFINITION 1.16 [8] Let $V\left(C_{n}(R)\right)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}\right\}, V\left(K_{n}\right)=\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{n-1}\right\}, r \in R$ and $j, m, q, t, x \in Z_{n}$ such that $\operatorname{gcd}(n, r)=m>1, x=j+q m, 0 \leq j \leq m-1$ and $0 \leq q, t \leq \frac{n}{m}-1$. Define $\theta_{n, r, t}: V\left(C_{n}(R)\right)$ $\rightarrow V\left(C_{n}(1,2, \ldots, n-1)\right)=V\left(K_{n}\right)$ such that $\theta_{n, r, t}\left(v_{x}\right)=u_{x+j t m}$ and $\theta_{n, r, t}\left(\left(v_{x}, v_{x+s}\right)\right)=\left(\theta_{n, r, t}\left(v_{x}\right), \theta_{n, r, t}\left(v_{x+s}\right)\right)$ for every $x \in Z_{n}$ and $s \in R$, under subscript arithmetic reflexive modulo n. Let $V_{n, r}=\left\{\theta_{n, r, t}: t=0,1, \ldots, \frac{n}{m}\right.$ $-1\}$ and $V_{n, r}\left(C_{n}(R)\right)=\left\{\theta_{n, r, t}\left(C_{n}(R)\right): t=0,1, \ldots, \frac{n}{m}-1\right\}$. Define 'o' in $V_{n, r}$ such that $\theta_{n, r, t} o \theta_{n, r, t}=$ $\theta_{n, r, t+t^{\prime}}$ and $\theta_{n, r, t}\left(C_{n}(R)\right) o \theta_{n, r, t^{\prime}}\left(C_{n}(R)\right)=\theta_{n, r, t+t^{\prime}}\left(C_{n}(R)\right)$ for every $\theta_{n, r, t}, \theta_{n, r, t} \in V_{n, r}$ where $t+t^{\prime}$ is calculated under addition modulo $\frac{n}{m}$. Then $\left(V_{n, r}\left(C_{n}(R)\right), \mathrm{o}\right)$ is an abelian group.
Clearly $V_{n, r}\left(C_{n}(R)\right)$ contains all isomorphic circulant graphs of Type 2 of $C_{n}(R)$, if exist. Let $T 2_{n, r}\left(C_{n}(R)\right)=\left\{C_{n}(R)\right\} \cup\left\{C_{n}(S): C_{n}(S)\right.$ is Type-2 isomorphic to $C_{n}(R)$ w.r.t. $\left.r\right\}$. Thus, $T 2_{n, r}\left(C_{n}(R)\right)=\left\{C_{n}(R)\right\} \cup\left\{\theta_{n, r, t}\left(C_{n}(R)\right): \theta_{n, r, t}\left(C_{n}(R)\right)=C_{n}(S)\right.$ and $C_{n}(S)$ is Type-2 isomorphic to $C_{n}(R)$ w.r.t. $\left.r, 0 \leq t \leq \frac{n}{m}-1\right\} \subseteq V_{n, r}\left(C_{n}(R)\right)$ and $\left(T 2_{n, r}\left(C_{n}(R)\right)\right.$, o) is a subgroup of $\left(V_{n, r}\left(C_{n}(R)\right)\right.$, o). Clearly, $T 1_{n}\left(C_{n}(R)\right) \cap T 2_{n, r}\left(C_{n}(R)\right)=\left\{C_{n}(R)\right\} . C_{n}(R)$ has Type-2 isomorphic circulant graph w.r.t. r iff $T 2_{n, r}\left(C_{n}(R)\right) \neq\left\{C_{n}(R)\right\}$ iff $T 2_{n, r}\left(C_{n}(R)\right) \cap\left\{C_{n}(R)\right\} \neq \Phi$ iff $\left|T 2_{n, r}\left(C_{n}(R)\right)\right|>1$.

Definition 1.17 For any circulant graph $C_{n}(R)$, if $T 2_{n, r}\left(C_{n}(R)\right) \neq\left\{C_{n}(R)\right\}$, then $\left(T 2_{n, r}\left(C_{n}(R)\right), \mathrm{o}\right)$ is called the Type-2 group of $C_{n}(R)$ w.r.t. runder 'o'.
Cayley Isomorphism (CI) problem determines which graphs (or which groups) have the CI-property and its investigation started with the investigation of isomorphism of circulant graphs. An important achievement is the complete classification of cyclic CI-groups by Muzychuk in 1997 [5],[6]. But study on non-CI-graphs is not much done. Type-2 isomorphic circulant graphs are clearly graphs without CI-property. Theorems 1.10 and 1.11 gave classes of circulant graphs without CI-property. In this paper Theorem 2.3 gives new class of circulant graphs without CI-property.
Effort to obtain more circulant graphs without CI-property is the motivation for this work. For all basic ideas in graph theory, we follow [3].

2 Main Result

THEOREM 2.1Fori $=1$ to $5, d_{i}=5 n(i-1)+1 \operatorname{and} R_{i}=\left\{5, d_{i}, 25 n-d_{i}, 25 n+d_{i}, 50 n-d_{i}, 50 n+d_{i}\right\}$, circulant graphs $C_{125 n}\left(R_{i}\right)$ are isomorphic circulant graphs, $n \in N$.

Proof:We prove that for $i=1$ to $5, d_{i}=5 n(i-1)+1$ and $R_{i}=\left\{5, d_{i}, 25 n-d_{i}, 25 n+d_{i}, 50 n-d_{i}, 50 n+d_{i}\right\}$, $\theta_{125 n, 5, i n}\left(C_{125 n}\left(R_{1}\right)\right)=C_{125 n}\left(R_{i+1}\right)$ where $i+1$ is calculated under addition modulo 5.

To simplify our calculation let us consider $R_{i}=\left\{5, d_{i}, 25 n-d_{i}, 25 n+d_{i}, 50 n-d_{i}, 50 n+d_{i}, 75 n-d_{i}\right.$, $\left.75 n+d_{i}, 100 n-d_{i}, 100 n+d_{i}, 125 n-d_{i}, 125 n-5\right\}, d_{i}=5 n(i-1)+1$ and $i=1$ to 5 . In particular,
$R_{1}=\{1,5,25 n-1,25 n+1,50 n-1,50 n+1,75 n-1,75 n+1,100 n-1,100 n+1,125 n-5,125 n-1\}$,
$R_{2}=\{5,5 n+1,20 n-1,30 n+1,45 n-1,55 n+1,70 n-1,80 n+1,95 n-1,105 n+1,120 n-1,125 n-5\}$,
$R_{3}=\{5,10 n+1,15 n-1,35 n+1,40 n-1,60 n+1,65 n-1,85 n+1,90 n-1,110 n+1,115 n-1,125 n-5\}$,
$R_{4}=\{5,10 n-1,15 n+1,35 n-1,40 n+1,60 n-1,65 n+1,85 n-1,90 n+1,110 n-1,115 n+1,125 n-5\}$,
$R_{5}=\{5,5 n-1,20 n+1,30 n-1,45 n+1,55 n-1,70 n+1,80 n-1,95 n+1,105 n-1,120 n+1,125 n-5\}$.

V. Vilfred\&P. Wilson

Using the definition of $\theta_{n, \mathrm{r}, t}$ we get the following
$\theta_{125 n, 5, n}\left(R_{1}\right)=\theta_{125 n, 5, n}(\{1,5,25 n-1,25 n+1,50 n-1,50 n+1,75 n-1,75 n+1,100 n-1,100 n+1,125 n-5$, $125 n-1\})=\{5 n+1,5,20 n-1,30 n+1,45 n-1,55 n+1,70 n-1,80 n+1,95 n-1,105 n+1,125 n-5,120 n-1\}=$ R_{2};
$\theta_{125 n, 5,2 n}\left(R_{1}\right)=\theta_{125 n, 5,2 n}(\{1,5,25 n-1,25 n+1,50 n-1,50 n+1,75 n-1,75 n+1,100 n-1,100 n+1,125 n-$ $5,125 n-1\})=\{10 n+1,5,15 n-1,35 n+1,40 n-1,60 n+1,65 n-1,85 n+1,90 n-1,110 n+1,125 n-5,115 n-1\}$ $=R_{3}$;
$\theta_{125 n, 5,3 n}\left(R_{1}\right)=\theta_{125 n, 5,3 n}(\{1,5,25 n-1,25 n+1,50 n-1,50 n+1,75 n-1,75 n+1,100 n-1,100 n+1,125 n-$ $5,125 n-1\})=\{15 n+1,5,10 n-1,40 n+1,35 n-1,65 n+1,60 n-1,90 n+1,85 n-1,115 n+1,125 n-5,110 n-1\}$ $=R_{4}$;
$\theta_{125 n, 5,4 n}\left(R_{1}\right)=\theta_{125 n, 5,4 n}(\{1,5,25 n-1,25 n+1,50 n-1,50 n+1,75 n-1,75 n+1,100 n-1,100 n+1,125 n-$ $5,125 n-1\})=\{20 n+1,5,5 n-1,45 n+1,30 n-1,70 n+1,55 n-1,95 n+1,80 n-1,120 n+1,125 n-5,105 n-1\}$ $=R_{5}$.
Now the result follows from the definition of $\theta_{n, \mathrm{r}, t}$.
THEOREM 2.2 WhenR $_{i}=\left\{5, d_{i}, 25 n-d_{i}, 25 n+d_{i}, 50 n-d_{i}, 50 n+d_{i}\right\}, d_{i}=5 n(i-1)+1, i, j=1$ to 5 and $n \in N, \theta_{125 n, 5, j n}\left(C_{125 n}\left(R_{i}\right)\right)=C_{125 n}\left(R_{i+j}\right)$ where $i+j i s$ calculated under addition modulo 5 and $C_{125 n}\left(R_{i}\right)$ are Type- 2 isomorphic circulant graphs.
Proof: To prove that a set of circulant graphs $\left\{C_{n}(R)\right\}$ are of Type- 2 isomorphic, it is enough to prove that every pair of the circulant graphs are different (not the same), isomorphic and not of Adam's isomorphic (not of Type-1 isomorphic).

When $R_{i}=\left\{5, d_{i}, 25 n-d_{i}, 25 n+d_{i}, 50 n-d_{i}, 50 n+d_{i}\right\}, d_{i}=5 n(i-1)+1,1 \leq i, j \leq 5$ and $n \in N, R_{i}=R_{j}$ iff $i=$ j. Thus for different i, the set of jump sizes of the five circulant graphs $C_{125 n}\left(R_{i}\right)$ are different and thereby the five circulant graphs are also different.

In the proof of Theorem 2.1, we have $\theta_{125 n, 5, i n}\left(C_{125 n}\left(R_{1}\right)\right)=C_{125 n}\left(R_{i+1}\right)$ where $i+1$ is calculated under addition modulo $5, \mathrm{i}=1$ to 5 . Similarly it is easy to prove that $\theta_{125 n, 5, \text { in }}\left(C_{125 n}\left(R_{2}\right)\right)=$ $C_{125 n}\left(R_{i+2}\right), \quad \theta_{125 n, 5, i n}\left(C_{125 n}\left(R_{3}\right)\right)=C_{125 n}\left(R_{i+3}\right), \quad \theta_{125 n, 5, i n}\left(C_{125 n}\left(R_{4}\right)\right)=C_{125 n}\left(R_{i+4}\right)$ and $\theta_{125 n, 5, \text { in }}\left(C_{125 n}\left(R_{5}\right)\right)=C_{125 n}\left(R_{i+5}\right)=C_{125 n}\left(R_{i}\right)$ where $R_{i}=\left\{5, d_{i}, 25 n-d_{i}, 25 n+d_{i}, 50 n-d_{i}\right.$, $\left.50 n+d_{i}\right\}, d_{i}=5 n(i-1)+1, i=1$ to 5 and $n \in N$. This implies when $R_{i}=\left\{5, d_{i}, 25 n-d_{i}, 25 n+d_{i}, 50 n-d_{i}\right.$, $\left.50 n+d_{i}\right\}, d_{i}=5 n(i-1)+1, i, j=1$ to 5 and $n \in N, \theta_{125 n, 5, i n}\left(C_{125 n}\left(R_{j}\right)\right)=C_{125 n}\left(R_{i+j}\right)$ where $i+j$ is calculated under addition modulo 5 . This implies that for $i=1$ to 5 all the five circulant graphs $C_{125 n}\left(R_{i}\right)$ are isomorphic.

To complete the proof we are left with establishing their isomorphism is of Type-2. Now it is enough to prove that each pair of isomorphic circulant graphs $C_{125 n}\left(R_{i}\right)$ and $C_{125 n}\left(R_{j}\right)$ for $i \neq j$ are not of Type-1, $1 \leq i, j \leq 5$. At first we prove that isomorphic circulant graphs $C_{125 n}\left(R_{1}\right)$ and $C_{125 n}\left(R_{2}\right)$ are Type-2.

Claim: For $R_{1}=\{1,5,25 n-1,25 n+1,50 n-1,50 n+1\}, R_{2}=\{5,5 n+1,20 n-1,30 n+1,45 n-1,55 n+1\}$ and $n \in N, C_{125 n}\left(R_{1}\right)$ and $C_{125 n}\left(R_{2}\right)$ are Type-2 isomorphic.

If not, they are of Adam's isomorphic. This implies, there exists $s \in N$ such that $C_{125 n}\left(s R_{1}\right)=$ $C_{125 n}\left(R_{2}\right)$ where $s=5 x-4$ or $s=5 x-3$ or $s=5 x-2$ or $s=5 x-1$ and $\operatorname{gcd}(125 n, s)=1, x \in N$. Now let us choose s such that $s=5 x-4$ such that $\operatorname{gcd}(125 n, 5 x-4)=1, C_{125 n}\left((5 x-4) R_{1}\right)=C_{125 n}\left(R_{2}\right)$ and $x \in N$. This implies, ($5 x-4$) $\{1,5,25 n-1,25 n+1,50 n-1,50 n+1,75 n-1,75 n+1,100 n-1,100 n+1,125 n-5,125 n-$ $1\}=\{5,5 n+1,20 n-1,30 n+1,45 n-1,55 n+1,70 n-1,80 n+1,95 n-1,105 n+1,120 n-1,125 n-5\}$ under arithmetic modulo $125 n$. This implies, $5(5 x-4)$, ($5 x-4$)(125n-5), $5+125 n p_{1}$ and $125 n-5+125 n p_{2}$ are the only numbers, each is a multiple of 5 , in the two sets for some $p_{1}, p_{2} \in N_{0}$. Thus when $s=5 x-4$ the following two cases arise.
Case i $5(5 x-4)=5+125 n p_{1}, p_{1} \in N_{0}, x \in N, 1 \leq 5 x-4 \leq 125 n-1$.
In this case, $p_{1}=0$ or 1 or 2 or 3 or 4 since $1 \leq 5 x-4 \leq 125 n-1$ and $n, x \in N$. When $p_{1}=0,5 x-4=1 ; p_{1}=$ $1,5 x-4=25 n+1 ; p_{1}=2,5 x-4=50 n+1 ; p_{1}=3,5 x-4=75 n+1 ; p_{1}=4,5 x-4=100 n+1$ and in each case, graph $C_{125 n}\left((5 x-4) R_{1}\right)$ is same as $C_{125 n}\left(R_{1}\right)$. The jump sizes of the circulant graph $C_{125 n}\left(s R_{1}\right)$

Family of Circulant Graphs without Cayley Isomorphism Property with $\boldsymbol{m}_{\boldsymbol{i}}=5$

corresponding to Adam's isomorphism when $s=5 x-4=25 n+1, s=5 x-4=50 n+1, s=5 x-4=75 n+1$ and $s=5 x-4=100 n+1$ are given in Table 1.

Case ii $5(5 x-4)=125 n-5+125 n p_{2}, p_{2} \in N_{0}, x \in N, 1 \leq 5 x-4 \leq 125 n-1$.
In this case, $p_{2}=0$ or 1 or 2 or 3 or 4 since $1 \leq 5 x-4 \leq 125 n-1$ and $n, x \in N$. When $p_{2}=0,5 x-4=25 n-1$; $p_{2}=1,5 x-4=50 n-1 ; p_{2}=2,5 x-4=75 n-1 ; p_{2}=3,5 x-4=100 n-1 ; p_{2}=2,5 x-4=125 n-1$ and in each case, graph $C_{125 n}\left((5 x-4) R_{1}\right)$ is same as $C_{125 n}\left(R_{1}\right)$. The jump sizes of the circulant graph $C_{125 n}\left(s R_{1}\right)$ corresponding to Adam's isomorphism when $s=5 x-4=25 n-1, s=5 x-4=50 n-1, s=5 x-4$ $=75 n-1, s=5 x-4=100 n-1$ and $s=5 x-4=125 n-1$ are given in Table 1.
Consider the case when $s=5 x-3$ such that $C_{125 n}\left(s R_{1}\right)=C_{125 n}\left(R_{2}\right)$ where $\operatorname{gcd}(125 n, 5 x-3)=1,1 \leq 5 x$ $3 \leq 125 n-1$ and $x \in N$. This implies, $(5 x-3)\{1,5,25 n-1,25 n+1,50 n-1,50 n+1,75 n-1,75 n+1,100 n-1$, $100 n+1,125 n-5,125 n-1\}=\{5,5 n+1,20 n-1,30 n+1,45 n-1,55 n+1,70 n-1,80 n+1,95 n-1,105 n+1$, $120 n-1,125 n-5\}$ under arithmetic modulo $125 n$. This implies, $5(5 x-3)$, $(5 x-3)(125 n-5), 5+125 n p_{1}$ and $125 n-5+125 n p_{2}$ are the only numbers, each is a multiple of 5 , in the two sets for some $p_{1}, p_{2} \in N_{0}$. Thus when $s=5 x-3$ the following two cases arise.
Table 1.Calculation of rs under arithmetic modulo $125 n$ w.r.t. R_{1} where $s=5 x-i, i=1,2,3,4$.

$\mathbf{s r}$	$\mathbf{1}$	$\mathbf{2 5 n - 1}$	$\mathbf{2 5 n + 1}$	$\mathbf{5 0 n - 1}$	$\mathbf{5 0 n + 1}$	$\mathbf{7 5 n - 1}$	$\mathbf{7 5 n + 1}$	$\mathbf{1 0 0 n - \mathbf { 1 }}$	$\mathbf{1 0 0 n + \mathbf { 1 }}$	$\mathbf{1 2 5 n - \mathbf { 1 }}$
$\mathbf{2 5 n + 1}$	$25 n+1$	$125 n-1$	$50 n+1$	$25 n-1$	$75 n+1$	$50 n-1$	$100 n+1$	$75 n-1$	1	$100 n-1$
$\mathbf{5 0 n + 1}$	$50 n+1$	$100 n-1$	$75 n+1$	$125 n-1$	$100 n+1$	$25 n-1$	1	$50 n-1$	$25 n+1$	$75 n-1$
$\mathbf{7 5 n + 1}$	$75 n+1$	$75 n-1$	$100 n+1$	$100 n-1$	1	$125 n-1$	$25 n+1$	$25 n-1$	$50 n+1$	$50 n-1$
$\mathbf{1 0 0 n + 1}$	$100 n+1$	$50 n-1$	1	$75 n-1$	$25 n+1$	$100 n-1$	$50 n+1$	$125 n-1$	$75 n+1$	$25 n-1$
$\mathbf{2 5 n - 1}$	$25 n-1$	$75 n+1$	$125 n-1$	$50 n+1$	$100 n-1$	$25 n+1$	$75 n-1$	1	$50 n-1$	$100 n+1$
$\mathbf{5 0 n - 1}$	$50 n-1$	$50 n+1$	$25 n-1$	$25 n+1$	$125 n-1$	1	$100 n-1$	$100 n+1$	$75 n-1$	$75 n+1$
$\mathbf{7 5 n - 1}$	$75 n-1$	$25 n+1$	$50 n-1$	1	$25 n-1$	$100 n+1$	$125 n-1$	$75 n+1$	$100 n-1$	$50 n+1$
$\mathbf{1 0 0 n - 1}$	$100 n-1$	1	$75 n-1$	$100 n+1$	$50 n-1$	$25 n+1$	$25 n-1$	$50 n+1$	$125 n-1$	$25 n+1$
$\mathbf{1 2 5 n - 1}$	$125 n-1$	$100 n+1$	$100 n-1$	$75 n+1$	$75 n-1$	$50 n+1$	$50 n-1$	$25 n+1$	$25 n-1$	1

Table 2.Calculation of $r s$ under arithmetic modulo $125 n$ w.r.t. R_{2} where $s=5 x-i, i=1,2,3,4$.

$\mathbf{r n}$	$\mathbf{5 n + 1}$	$\mathbf{2 0 n - 1}$	$\mathbf{3 0 n + 1}$	$\mathbf{4 5 n - \mathbf { 1 }}$	$\mathbf{5 5 n + 1}$	$\mathbf{7 0 n - 1}$	$\mathbf{8 0 n + \mathbf { 1 }}$	$\mathbf{9 5 n - \mathbf { 1 }}$	$\mathbf{1 0 5 n + \mathbf { 1 }}$	$\mathbf{1 2 0 n - \mathbf { 1 }}$
$\mathbf{2 5 n + 1}$	$30 n+1$	$120 n-1$	$55 n+1$	$20 n-1$	$80 n+1$	$45 n-1$	$105 n+1$	$70 n-1$	$5 n+1$	$95 n-1$
$\mathbf{5 0 n + 1}$	$55 n+1$	$95 n-1$	$80 n+1$	$120 n-1$	$105 n+1$	$20 n-1$	$5 n+1$	$45 n-1$	$30 n+1$	$70 n-1$
$\mathbf{7 5 n + 1}$	$80 n+1$	$70 n-1$	$105 n+1$	$95 n-1$	$5 n+1$	$120 n-1$	$30 n+1$	$20 n-1$	$55 n+1$	$45 n-1$
$\mathbf{1 0 0 n + 1}$	$105 n+1$	$45 n-1$	$5 n+1$	$70 n-1$	$25 n+1$	$95 n-1$	$55 n+1$	$120 n-1$	$80 n+1$	$20 n-1$
$\mathbf{2 5 n - 1}$	$20 n-1$	$80 n+1$	$120 n-1$	$55 n+1$	$95 n-1$	$30 n+1$	$70 n-1$	$5 n+1$	$45 n-1$	$105 n+1$
$\mathbf{5 0 n - 1}$	$45 n-1$	$55 n+1$	$20 n-1$	$30 n+1$	$120 n-1$	$5 n+1$	$95 n-1$	$105 n+1$	$70 n-1$	$80 n+1$
$\mathbf{7 5 n - 1}$	$70 n-1$	$30 n+1$	$45 n-1$	$5 n+1$	$20 n-1$	$105 n+1$	$120 n-1$	$80 n+1$	$95 n-1$	$55 n+1$
$\mathbf{1 0 0 n - 1}$	$95 n-1$	$5 n+1$	$70 n-1$	$105 n+1$	$45 n-1$	$80 n+1$	$20 n-1$	$55 n+1$	$120 n-1$	$30 n+1$
$\mathbf{1 2 5 n - 1}$	$120 n-1$	$105 n+1$	$95 n-1$	$80 n+1$	$70 n-1$	$55 n+1$	$45 n-1$	$30 n+1$	$20 n-1$	$5 n+1$

Table 3. Calculation of rs under arithmetic modulo $125 n$ w.r.t. R_{3} where $s=5 x-i, i=1,2,3,4$.

$\mathbf{r n}$	$\mathbf{1 0 n + 1}$	$\mathbf{1 5 n - 1}$	$\mathbf{3 5 n + 1}$	$\mathbf{4 0 n - \mathbf { 1 }}$	$\mathbf{6 0 n + 1}$	$\mathbf{6 5 n - 1}$	$\mathbf{8 5 n + 1}$	$\mathbf{9 0 n - 1}$	$\mathbf{1 1 0 n + 1}$	$\mathbf{1 1 5 n - \mathbf { 1 }}$
$\mathbf{2 5 n + 1}$	$35 n+1$	$115 n-1$	$60 n+1$	$15 n-1$	$85 n+1$	$40 n-1$	$110 n+1$	$65 n-1$	$10 n+1$	$90 n-1$
$\mathbf{5 0 n + 1}$	$60 n+1$	$90 n-1$	$85 n+1$	$115 n-1$	$110 n+1$	$15 n-1$	$10 n+1$	$40 n-1$	$35 n+1$	$65 n-1$
$\mathbf{7 5 n + 1}$	$85 n+1$	$65 n-1$	$110 n+1$	$90 n-1$	$10 n+1$	$115 n-1$	$35 n+1$	$15 n-1$	$60 n+1$	$40 n-1$
$\mathbf{1 0 0 n + 1}$	$110 n+1$	$40 n-1$	$10 n+1$	$65 n-1$	$35 n+1$	$90 n-1$	$60 n+1$	$115 n-1$	$85 n+1$	$15 n-1$
$\mathbf{2 5 n - 1}$	$15 n-1$	$85 n+1$	$115 n-1$	$60 n+1$	$90 n-1$	$35 n+1$	$65 n-1$	$10 n+1$	$40 n-1$	$110 n+1$
$\mathbf{5 0 n - 1}$	$40 n-1$	$60 n+1$	$15 n-1$	$35 n+1$	$115 n-1$	$10 n+1$	$90 n-1$	$110 n+1$	$65 n-1$	$85 n+1$
$\mathbf{7 5 n - 1}$	$65 n-1$	$35 n+1$	$40 n-1$	$10 n+1$	$15 n-1$	$110 n+1$	$115 n-1$	$85 n+1$	$90 n-1$	$60 n+1$
$\mathbf{1 0 0 n - 1}$	$90 n-1$	$10 n+1$	$65 n-1$	$110 n+1$	$40 n-1$	$85 n+1$	$15 n-1$	$60 n+1$	$115 n-1$	$35 n+1$
$\mathbf{1 2 5 n - 1}$	$115 n-1$	$110 n+1$	$90 n-1$	$85 n+1$	$65 n-1$	$60 n+1$	$40 n-1$	$35 n+1$	$15 n-1$	$10 n+1$

Case i $5(5 x-3)=5+125 n p_{1}, p_{1} \in N_{0}, x \in N, 1 \leq 5 x-3 \leq 125 n-1$.
In this case, $p_{1}=0$ or 1 or 2 or 3 or 4 since $1 \leq 5 x-3 \leq 125 n-1$ and $n, x \in N$. When $p_{1}=0,5 x-3=1 ; p_{1}=$ $1,5 x-3=25 n+1 ; p_{1}=2,5 x-3=50 n+1 ; p_{1}=3,5 x-3=75 n+1 ; p_{1}=4,5 x-3=100 n+1$ and in each case, graph $C_{125 n}\left((5 x-3) R_{1}\right)$ is same as graph $C_{125 n}\left(R_{1}\right)$. The jump sizes of the circulant graph $C_{125 n}\left(s R_{1}\right)$ corresponding to Adam's isomorphism when $s=5 x-3=25 n+1, s=5 x-3=50 n+1, s=5 x$ $3=75 n+1$ and $s=5 x-3=100 n+1$ are given in Table 1.

Case ii $5(5 x-3)=125 n-5+125 n p_{2}, p_{2} \in N_{0}, x \in N, 1 \leq 5 x-3 \leq 125 n-1$.
In this case, $p_{2}=0$ or 1 or 2 or 3 or 4 since $1 \leq 5 x-3 \leq 125 n-1$ and $n, x \in N$. When $p_{2}=0,5 x-3=25 n-1$; $p_{2}=1,5 x-3=50 n-1 ; p_{2}=2,5 x-3=75 n-1 ; p_{2}=3,5 x-3=100 n-1 ; p_{2}=4,5 x-3=125 n-1$ and in each case, graph $C_{125 n}\left((5 x-3) R_{1}\right)$ is same as $C_{125 n}\left(R_{1}\right)$. The jump sizes of the circulant graph $C_{125 n}\left(s R_{1}\right)$ corresponding to Adam's isomorphism when $s=5 x-3=25 n-1, s=5 x-3=50 n-1, s=5 x-3$ $=75 n-1, s=5 x-3=100 n-1$ and $s=5 x-3=125 n-1$ are given in Table 1.
Similarly when $s=5 x-2$ and $s=5 x-1$ it is easy to see that $C_{125 n}\left((5 x-2) R_{1}\right)=C_{125 n}\left(R_{1}\right)$ and $C_{125 n}\left((5 x-1) R_{1}\right)=C_{125 n}\left(R_{1}\right)$. Thus $C_{125 n}\left(s R_{1}\right)=C_{125 n}\left(R_{1}\right)$ when $s=5 x-4$ or $s=5 x-3$ or $s=5 x-2$ or $s=5 x-1$ where $\operatorname{gcd}(125 n, s)=1$ and $n, x \in N$. This implies $C_{125 n}\left(s R_{1}\right) \neq C_{125 n}\left(R_{2}\right)$ for every $s \in N$ such that $\operatorname{gcd}(125 n, s)=1$ and $n \in N$.
This shows that the isomorphic circulant graphs $C_{125 n}\left(R_{1}\right)$ and $C_{125 n}\left(R_{2}\right)$ for $R_{1}=\{1,5,25 n-1$, $25 n+1,50 n-1,50 n+1\}, R_{2}=\{5,5 n+1,20 n-1,30 n+1,45 n-1,55 n+1\}$ are not of Type-1, $n \in N$. This implies, for $R_{1}=\{1,5,25 n-1,25 n+1,50 n-1,50 n+1\}, R_{2}=\{5,5 n+1,20 n-1,30 n+1,45 n-1,55 n+1\}$ and $n \in N, C_{125 n}\left(R_{1}\right)$ and $C_{125 n}\left(R_{2}\right)$ are Type-2 isomorphic.
By similar discussion and calculation it is easy to prove that circulant graphs $C_{125 n}\left(R_{1}\right)$ and $C_{125 n}\left(R_{j}\right)$ are Type-2 isomorphic for $j=3,4,5$. Thus we could prove that $C_{125 n}\left(R_{1}\right)$ and $C_{125 n}\left(R_{j}\right)$ are Type-2 isomorphic for $j=2,3,4,5$. Table- i corresponds to calculation of $r s$ under arithmetic modulo $125 n$ w.r.t R_{i} and R_{j+1} for $j=i, i+1, \ldots, 4$ and $i=1,2,3,4$.

The above discussion and calculations prove that circulant graphs $C_{125 n}\left(R_{i}\right)$ and $C_{125 n}\left(R_{j}\right)$ for $i \neq j$ are Type-2 isomorphic $, i, j=1,2,3,4,5$. Hence the result follows.

THEOREM 2.3 Fori $=1$ to $5, d_{i}=5 n(i-1)+1,3 \leq k a n d R_{i}=\left\{d_{i}, 25 n-d_{i}, 25 n+d_{i}, 50 n-d_{i}, 50 n+d_{i}\right.$, $\left.5 p_{1}, 5 p_{2}, \ldots, 5 p_{k-2}\right\}$, circulant graphs $C_{125 n}\left(R_{i}\right)$ are Type-2 isomorphic and without CI-property wheregcd $\left(p_{1}, p_{2}, \ldots, p_{k-2}\right)=1$ andn $, p_{1}, p_{2}, \ldots, p_{k-2} \in N$.

Proof:For $i=1$ to $5, d_{i}=5 n(i-1)+1,3 \leq k$ and $R_{i}=\left\{5, d_{i}, 25 n-d_{i}, 25 n+d_{i}, 50 n-d_{i}, 50 n+d_{i}\right\}$, circulant graphs $C_{125 n}\left(R_{i}\right)$ are Type-2 isomorphic, using Theorem $2.2, n \in N$. Lemma 1.5 helps us while searching for possible value(s) of t such that the transformed graph $\theta_{n, r, t}\left(C_{n}(R)\right)$ is circulant of the

Family of Circulant Graphs without Cayley Isomorphism Property with $\boldsymbol{m}_{\boldsymbol{i}}=5$

form $C_{n}(S)$ for some $S \subseteq[1, \mathrm{n} / 2]$, the calculation on r_{j} which are integer multiples of $m=$ $\operatorname{gcd}(n, r)$ need not be done as there is no change in these r_{j} under the transformation $\theta_{n, r, t}$. This implies, for $i=1$ to $5, d_{i}=5 n(i-1)+1$ and $R_{i}=\left\{d_{i}, 25 n-d_{i}, 25 n+d_{i}, 50 n-d_{i}, 50 n+d_{i}, 5 p_{1}, 5 p_{2}, \ldots, 5 p_{k-2}\right\}$, circulant graphs $C_{125 n}\left(R_{i}\right)$ are Type- 2 isomorphic circulant graphs where $3 \leq k, \operatorname{gcd}\left(p_{1}, p_{2}, \ldots, p_{k-2}\right)=1$ and $n, p_{1}, p_{2}, \ldots, p_{k-2} \in N$. Type-2 isomorphic circulant graphs are graphs without CI-property. Hence the result follows.

Table 4.Calculation of r r under arithmetic modulo $125 n$ w.r.t. R_{4} where $s=5 x-i, i=1,2,3,4$.

$\mathbf{r n}$	$\mathbf{1 0 n - 1}$	$\mathbf{1 5 n + 1}$	$\mathbf{3 5 n - 1}$	$\mathbf{4 0 n + 1}$	$\mathbf{6 0 n - 1}$	$\mathbf{6 5 n + 1}$	$\mathbf{8 5 n - \mathbf { 1 }}$	$\mathbf{9 0 n + 1}$	$\mathbf{1 1 0 n - \mathbf { 1 }}$	$\mathbf{1 1 5 n + 1}$
$\mathbf{2 5 n + 1}$	$110 n-1$	$40 n+1$	$10 n-1$	$65 n+1$	$35 n-1$	$90 n+1$	$60 n-1$	$115 n+1$	$85 n-1$	$15 n+1$
$\mathbf{5 0 n + 1}$	$85 n-1$	$65 n+1$	$110 n-1$	$90 n+1$	$10 n-1$	$115 n+1$	$35 n-1$	$15 n+1$	$60 n-1$	$40 n+1$
$\mathbf{7 5 n + 1}$	$60 n-1$	$90 n+1$	$85 n-1$	$115 n+1$	$110 n-1$	$15 n+1$	$10 n-1$	$40 n+1$	$35 n-1$	$65 n+1$
$\mathbf{1 0 0 n + 1}$	$35 n-1$	$115 n+1$	$60 n-1$	$15 n+1$	$85 n-1$	$40 n+1$	$110 n-1$	$65 n+1$	$10 n-1$	$90 n+1$
$\mathbf{2 5 n - 1}$	$90 n+1$	$10 n-1$	$65 n+1$	$110 n-1$	$40 n+1$	$85 n-1$	$15 n+1$	$60 n-1$	$115 n+1$	$35 n-1$
$\mathbf{5 0 n - 1}$	$65 n+1$	$35 n-1$	$40 n+1$	$10 n-1$	$15 n+1$	$110 n-1$	$115 n+1$	$85 n-1$	$90 n+1$	$60 n-1$
$\mathbf{7 5 n - 1}$	$40 n+1$	$60 n-1$	$15 n+1$	$35 n-1$	$115 n+1$	$10 n-1$	$90 n+1$	$110 n-1$	$65 n+1$	$85 n-1$
$\mathbf{1 0 0 n - 1}$	$15 n+1$	$85 n-1$	$115 n+1$	$60 n-1$	$90 n+1$	$35 n-1$	$65 n+1$	$10 n-1$	$40 n+1$	$110 n-1$
$\mathbf{1 2 5 n - 1}$	$115 n+1$	$110 n-1$	$90 n+1$	$85 n-1$	$65 n+1$	$60 n-1$	$40 n+1$	$35 n-1$	$15 n+1$	$10 n-1$

Table 5 Calculation of $r s$ under arithmetic modulo $125 n$ w.r.t. R_{5} where $s=5 x-i, i=1,2,3,4$.
Circulant graphs $\quad C_{125}(1,5,24,26,49,51), \quad C_{125}(5,6,19,31,44,56), \quad C_{125}(5,11,14,36,39,61)$,

$\mathbf{5 n}$	$\mathbf{5 n - 1}$	$\mathbf{2 0 n + 1}$	$\mathbf{3 0 n - \mathbf { 1 }}$	$\mathbf{4 5 n + 1}$	$\mathbf{5 5 n - 1}$	$\mathbf{7 0 n + 1}$	$\mathbf{8 0 n - \mathbf { 1 }}$	$\mathbf{9 5 n + \mathbf { 1 }}$	$\mathbf{1 0 5 n - \mathbf { 1 }}$	$\mathbf{1 2 0 n + 1}$
$\mathbf{2 5 n + 1}$	$105 n-1$	$45 n+1$	$5 n-1$	$70 n+1$	$30 n-1$	$95 n+1$	$55 n-1$	$120 n+1$	$80 n-1$	$20 n+1$
$\mathbf{5 0 n + 1}$	$80 n-1$	$70 n+1$	$105 n-1$	$95 n+1$	$5 n-1$	$120 n+1$	$30 n-1$	$20 n+1$	$55 n-1$	$45 n+1$
$\mathbf{7 5 n + 1}$	$55 n-1$	$95 n+1$	$80 n-1$	$120 n+1$	$105 n-1$	$20 n+1$	$5 n-1$	$45 n+1$	$30 n-1$	$70 n+1$
$\mathbf{1 0 0 n + 1}$	$30 n-1$	$120 n+1$	$55 n-1$	$20 n+1$	$80 n-1$	$45 n+1$	$105 n-1$	$70 n+1$	$5 n-1$	$95 n+1$
$\mathbf{2 5 n - 1}$	$95 n+1$	$5 n-1$	$70 n+1$	$105 n-1$	$45 n+1$	$80 n-1$	$20 n+1$	$55 n-1$	$120 n+1$	$30 n-1$
$\mathbf{5 0 n - 1}$	$70 n+1$	$30 n-1$	$45 n+1$	$5 n-1$	$20 n+1$	$105 n-1$	$120 n+1$	$80 n-1$	$95 n+1$	$55 n-1$
$\mathbf{7 5 n - 1}$	$45 n+1$	$55 n-1$	$20 n+1$	$30 n-1$	$120 n+1$	$5 n-1$	$95 n+1$	$105 n-1$	$70 n+1$	$80 n-1$
$\mathbf{1 0 0 n - 1}$	$20 n+1$	$80 n-1$	$120 n+1$	$55 n-1$	$95 n+1$	$30 n-1$	$70 n+1$	$5 n-1$	$45 n+1$	$105 n-1$
$\mathbf{1 2 5 n - 1}$	$120 n+1$	$105 n-1$	$95 n+1$	$80 n-1$	$70 n+1$	$55 n-1$	$45 n+1$	$30 n-1$	$20 n+1$	$5 n-1$

$C_{125}(5,9,16,34,41,66)=C_{125}(5,9,16,34,41,59)$ and $C_{125}(4,5,21,29,71,76)=C_{125}(4,5,21,29,49,54)$ are isomorphic and are of Type 2.

THEOREM 2.4Fori $=1$ to $5, d_{i}=5 n(i-1)+1,3 \leq k a n d R_{i}=\left\{d_{i}, 25 n-d_{i}, 25 n+d_{i}, 50 n-d_{i}, 50 n+d_{i}\right.$, $\left.5 p_{1}, 5 p_{2}, \ldots, 5 p_{k-2}\right\},\left(V_{125 n, 5}\left(C_{125 n}\left(R_{i}\right)\right), \mathrm{o}\right)$ is an abelian group wheregcd $\left(p_{1}, p_{2}, \ldots, p_{k-2}\right)=1, n, p_{1}, p_{2}, \ldots, p_{k-}$ ${ }_{2} \in N$.

Proof: The result follows from Theorem 2.3 and definition of $V_{n, r}$.
Let $C_{125}(1,5,24,26,49,51)=R_{1}, \quad C_{125}(5,6,19,31,44,56)=R_{2}, \quad C_{125}(5,11,14,36,39,61)=R_{3}$, $C_{125}(5,9,16,34,41,66)=C_{125}(5,9,16,34,41,59)=R_{4}$ and $C_{125}(4,5,21,29,71,76)=$
$C_{125}(4,5,21,29,49,54)=R_{5}$. Then the corresponding Type 2 group is $\left(T 2_{125,5}\left(C_{125}\left(R_{i}\right)\right)\right.$, o) where $T 2_{125,5}\left(C_{125}\left(R_{i}\right)\right)=\left\{R_{1}, R_{2}, R_{3}, R_{4}, R_{5}\right\}$ for $i=1,2,3,4,5$.

Open Problem Find $T 2_{125 n, 5}\left(C_{125 n}\left(R_{i}\right)\right)$ when $R_{i}=\left\{d_{i}, 25 n-d_{i}, 25 n+d_{i}, 50 n-d_{i}, 50 n+d_{i}\right.$, $\left.5 p_{1}, 5 p_{2}, \ldots, 5 p_{k-2}\right\}, 1 \leq i \leq 5, d_{i}=5 n(i-1)+1,3 \leq k, g c d\left(p_{1}, p_{2}, \ldots, p_{k-2}\right)=1, n, p_{1}, p_{2}, \ldots, p_{k-2} \in N$.

3 CONCLUSION

In this paper and in [12], [14], we obtained families of isomorphic circulant graphs of Type-2 (and without CI-property), each with 2,3 or 5 copies of isomorphic circulant subgraphs. One can go for general result on circulant graphs with $m_{i}=\operatorname{gcd}\left(n, r_{i}\right)$ is odd and >5.

ACKNOWLEDGEMENT

We express our sincere thanks to Prof. L.W. Beineke, Indiana-Purdue University, U.S., Prof. B. Alspach, University of Newcastle, Australia, Prof. M.I. Jinnah, University of Kerala, Thiruvananthapuram, India and Prof. V. Mohan, Thiyagarajar College of Engineering, Madurai, Tamil Nadu, India for their valuable suggestions and guidance. We also express our gratitude to Lerroy Wilson Foundation, India (www.WillFoundation.co.in) for providing financial assistance to do this research work.

REFERENCES

[1]. A. Adam, Research problem 2-10,J. Combinatorial Theory, 3 (1967), 393.
[2]. B. Alspach, J. Morris and V. Vilfred, Self-complementary circulant graphs, Ars Com., 53 (1999), 187-191.
[3]. P.J. Davis, Circulant Matrices, Wiley, New York, 1979.
[4]. B. Elspas and J. Turner, Graphs with circulant adjacency matrices, J. Combinatorial Theory,9 (1970), 297-307.
[5]. F. Harary, Graph Theory,Addison - Wesley, Reading, MA, 1969.
[6]. I. Kra and S. R. Simanca, On Circulant Matrices, AMS Notices, 59 (2012), 368-377.
[7]. C. H. Li, On isomorphisms of finite Cayley graphs - a survey. Discrete Math. 256 (2002), 301334.
[8]. J. Morris, Automorphism groups of circulant graphs - a survey, arXiv: math/ 0411302v1 [math.CO], 13 Nov. 2004.
[9]. M. Muzychuk, On Adam's Conjecture for circulant graphs, Discrete Math., 167/168 (1997), 497-510.
[10].V. Vilfred, E-labelled Graphs and Circulant Graphs, Ph.D. Thesis, University of Kerala, Thiruvananthapuram, India, March 1994.
[11].V. Vilfred, A Theory of Cartesians Product and Factorization of Circulant Graphs,Hindawi Pub. Corp. - J. Discrete Math., Vol. 2013, Article ID 163740, 10 pages.
[12]. V. Vilfred, New Abelian Groups from Isomorphism of Circulant Graphs, Proce. of Inter. Conf. on Applied Math. and Theoretical Computer Sci., St. Xavier's Catholic Engineering College, Nagercoil, Tamil Nadu, India (2013), xiii-xvi. ISBN 978-93-82338-30-7.
[13]. V. Vilfred,On Circulant Graphs in Graph Theory and its Applications, Narosa Publ., New Delhi, India (2003), 34-36. ISBN 81-7319-569-2.
[14].V. Vilfred and P. Wilson, New Family of Circulant Graphs without Cayley Isomorphism Property with $m_{i}=3$ (Communicated for publication).

Fig. $\mathbf{1 .} \boldsymbol{C}_{16}(1,2,7)$ Fig. $\mathbf{2 .} \boldsymbol{C}_{16}(2,3,5)$

