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Abstract: Although many and important papers, including valuable contributions in the domain of the Galois 
Theory have been published, there are still certain domains, the revisiting of which may be very interesting. 
Firstly, the definitions of various terms are very different for almost every author. For instance, there are two 
different definitions for the normal subgroup. Also, some subjects like the adjunction of roots, developed by 
many authors have avoided the difficulty which blocks in many cases its applicability, but does not affect the 
utility of the usual Galois condition of solvability. The condition fulfilled by the permutations was for a long 
time established; however no intuitive example was given for clarifying this problem. All these problems have 
been analyzed in this work looking for to bring intuitive presentations aiming practical application. 
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1. INTRODUCTION  
Many studies have been devoted to the Galois Theory [1]-[14]. Some scientists have been very 
interested in this theory, returning several times to it, trying to find new ways for proving its 
theorems. The aim of the present paper is to make an explanation as concise and simple as possible, 
aiming practical applications, and avoiding possible confusions. Especially, we had in view the 
presentations of Galois and certain orientations due to Verriest. In order to avoid for the reader the 
necessity to read some details which intervenes in the presentation, we recalled shortly the useful 
explanations. 

Among the encountered problems, we can mention those which concern: the order of a group and the 
order of permutations of the group; the conditions for the reduction of the group of an equation be 
applicable; the actual role of the use of permutations; the condition satisfied by the permutations in 
the case of equations solvable by radicals; some definitions. 

2. CONSIDERATIONS ON CERTAIN DEFINITIONS  
Let ( ) 0=xf  be the general form of a polynomial equation, with its coefficients in number field F  
belonging to the field of rational numbers Q. The group of this equation, also called Galois group, is 
expressed by the set of permutations of the roots, which do not modify any relation among these roots, 
over the number field F , [11, p. 117, 193]. 

We shall recall several definitions in the simplest form. Any number set (number field) say B  is 
called a subfield of any set A  (number field); if B  is a subset of A . We recall that a number field F  
is a field extension of a field B , if and only if B  is a subfield of a number field A . 

The splitting field of a polynomial is the smallest number field which contains all the roots of the 
polynomial the coefficients of which are in a number field denoted say by K . 

According to Verriest, one can consider a polynomial ( )xf  in a number field denoted by F  which 
may be included in a larger number field F ′ . One can call factorization field of ( )xf , the numerical 
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field of smallest extension containing the number field F  and the roots of ( )xf , for example F ′ . We 
consider that this denomination may simplify some explanations. 

2.1. The unit element. It belongs to any group or subgroup and may be denoted by the same symbol 
E , although certain authors are using different symbols for each type of any complex, i.e., element of 
any set, namely, group element, semi-group and group. The unity, i.e., the unit element which satisfies 
the relations EXXE = , ,1 EXX =−  regardless the type of X , the unity E  taking the 
corresponding fore-name (group, subgroup, etc.). 

A polynomial (or polynomial equation) the coefficients of which are all prime numbers among them 
(i.e. the greater common divisor of any two coefficients is 1) is called primitive polynomial (or 
equation). If they are not, it is called imprimitive polynomial, [11, p. 68].  

Complex is called any expression of the form HaC =  where a  and H  may represent any element 
of a set. 
For denoting that an element, namely an element a  or a complex C  belongs to any group or complex 

,G  the following relation Ga∈  or GC∈ , respectively, is used. 
If some of these complexes have common elements, each of these elements will be considered only 
once. For example, if BBB =+  and GB ⊆  then GBG =+ . 
The multiplication of a complex ...321 CCCC ++=  by any element a , yields 

...321 aCaCaCaC ++=  written in this order or conversely with a  before. Similarly, if a  is in C  or 
H , then CaC =  and HaH = . At any rate, despite the name of multiplication, this computation has 
nothing to do with the matrix product. Also, the product of element complexes belonging to any group 
is associative. 

2.2. Discriminant and group class. The finite simple groups may be classified completely into 
several classes as detailed in [9]. Here, we shall consider only: 1. Symmetric groups nS ;2. Alternating 
groups nA .  

Let us denote the general equation of degree n  in any number field F . The group of this equation 
(Galois group) is the symmetric group of its roots, hence a sequence of the roots. 
We recall that the discriminant, abbreviated Discr , of this equation is given by the product of all its 
root differences, namely the square of it. We have: 
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The symmetric group of permutations leaves unchanged any relation in the number field F , what is 
valid for both odd and even permutations. The latter ones have the same effect for the discriminant, 
being similar to the equation group. The set of even permutations of a symmetric group of any degree 
n  represents a subgroup, because the product of two such permutations yields also an even 
permutation. The odd permutations do not satisfy this condition, being called a complex adjoint. The 

order of the mentioned subgroup should be 
2
!n . Therefore, the sequence of composition factors 

includes the ratio of nA  and E . We can see that for 4>n , this ratio cannot be a prime number. It 
follows that any group of degree 4>n  is not metacyclic. 

2.3. The adjoint complex. Let us consider a group G  and any subgroup H  of it. The result of the 
multiplication of H  by any element a  of G  is called complex, being for instant neither element nor 
subgroup. All these results belong to group G . Moreover, if a  belongs to H , the result is just the 
subgroup H , because, as shown HHa = . 
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2.4. Expanding a group in terms of one of its subgroups. Let as previously, G  and H  be a group 
and one of its subgroup, respectively. Let us denote by lower case letters the elements of the given 
group, which can appear several times. We can write: 

,... eHcHbHaHG ++++=                                                                                                           (3) 

because the sum of products above gives just the group, starting from the subgroup, and using the 
elements contained by the group but not contained by the subgroup. It is worth noting that the results 
obtained by writing the elements after the subgroup (rightly) or conversely, give different results. 

2.5. The order of a group and of its subgroups. Let us suppose that in the decomposition above, we 
had an expression with a number of 5 elements, therefore in the right-hand side we have a sum with 
five terms, 5=r , and each of them, having the same construction, will have the same number of 
terms, say t . Therefore, the number of terms of the left-hand side will be: trg ⋅= , so that in general, 
the number of terms of a subgroup should divide the number of terms of the group, and the order of a 
subgroup should divide the order of the group to which it belongs. It follows that a group with a 

prime order cannot accept a subgroup, except the unit subgroup, or itself. The ratio 
r
gti ==  is called 

the index of the subgroup in the group G . 
According to many authors, the order of a group is the number of objects it contains, and the degree of 
a permutation group is the number to which it refers [11, p. 8]. These statements could lead to 
confusions, we shall avoid. For this purpose, we shall mention if the word order concerns the number 
of permutations. 
For being a group, a set must satisfy the four known postulates recalled as follows. Let WVU ,,  be 
elements (subgroups or letters) of any group G  then, the next four fulfilled relations are the 
mentioned postulates: WVU =⋅ ; ( ) ( )WVUWVU ⋅⋅=⋅⋅  the half-height point being optional; 

,EUUE ⋅=⋅ the last letter being called unit element; EUU =⋅ −1 . 
At the same time, the number of permutations that may be performed by a permutation group 
generally differs from its order as defined above, although sometimes expressed by the same word, 
except the case that the order concerns the number of permutations. In the case of a group with n  
elements, the total number of permutations is n !, hence a factorial. 

2.6. The normaliser of an element of a group. If two elements (letters or subgroups) of a group G , 
namely here subgroups, fulfil the relation AXXA =  they are called to be permutable. The set of 
elements X  of a group which are permutable to any given element A  represents a subgroup called 
the normaliser of A  and denoted AP . 

3. TRANSFORMATIONS OF ELEMENTS  

The permutation of an element (letter or subgroup) here a subgroup, by multiplying both sides of the 
preceding relation, with 1−A  yields: 

,:;; 11 −− === XAAXXXAAXAXA                                                                                             (4) 

where the last relation is called the transform of any subgroup X  by the subgroup A . A subgroup of 
any group is called to be invariant if it is permutable with any other subgroup of the group. By 
performing all transformations of the element A  above, by all elements of the group G  with g  
elements, we shall obtain g  transformed elements, but only a smaller number will differ from each 
other, this set is called a class of conjugate elements in G , namely conjugate subgroups. Also, one 
says that X  is the conjugate of A  in G . 
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A subgroup having the index 2=i  is invariant. Indeed, consider the group G  having the subgroup 
H  with index 2. We can expand MHHG +=  where M  does not belong to H . By performing 
another expansion, there follows: 

;; HMMHHMHG =+=                                                                                                               
(5) 

and hence M  and H  are permutable, and this is valid for each element of G . 

3.1. Divisor of a group. Each set of elements, A , forming a group inside any group G  is called a 
subgroup of G , a proper subgroup of G  or a divisor of G . Then, G  can be called to be a G  

improper divisor of G . Let us denote by expression 
A
GN =  a divisor of group G . 

Any group G  has two implicit divisors, namely E  and G . If it has not another subgroup it is called 
to be simple, otherwise composed. It is worth noting that the denomination divisor, despite its name, 
differs as action from the known meaning in Arithmetic or Algebra, concerning rather a subtraction 
than a division. 

3.2. Invariant or normal subgroup. A subgroup which is equal to each of its conjugate subgroups is 
called to be a normal or invariant subgroup. A normal subgroup denoted by letter N  belonging to any 
group G  should satisfy the relation: 

,;1 NAANANAN == −                                                                                                                    (6) 

for any element (letter or subgroup) A  of group G . It is worth noting that certain authors wrote the 
first formula above changing the position of A  and 1−A  with each other. Also, in the works of Galois, 
except the preceding procedure, he resorted to the structure of the group for distinguishing the normal 
subgroups.  

3.3. Maximum Invariant or normal subgroup. The set N  is a maximum invariant subgroup of 

group G  if 
N
G  is a simple group. Indeed, in this case 

N
G  has no an invariant subgroup and N  fulfils 

the condition to be maximum. 

3.4. The expression of permutations in form of cycles. Consider a permutation with five elements, 
letters or numbers: 
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32145
54321

:;
31542
54321

:;
21543
54321

: PPP .                                                                  (7 a, b, c) 

The cycles are established starting from the upper row from any element position (letter or number, 
here we shall use numbers), for instance 1, and go to the element, on the same column, below, on the 
lower row. Then, we go up to the upper row, on any column, to the same number or letter which we 
leaved on the lower row. Then, we go back, down on the lower row to the number of the same 
column. After having encountered the starting element, we consider the cycle closed. If we have 
encountered all elements, the procedure is finished. If not, we repeat the procedure starting from an 
element not still encountered, and so on, till we have browsed all elements. If there remains, on the 
same column the same elements we can write them once constituting by themselves a single cycle, 
however it is not strictly required and can be omitted.  

In the first case, one starts from any position like 1, of first upper row: 1, 3, 3, 5, 5, 2, 4, 1, or then 1, 
3, 5, 2, 4 and stops after reaching the starting number. The last set is called the orbit of 1. This 
denomination can be always used. 

In the second case, one starts from any position like 3, of first upper row: 3, 5, 5, 3, or then 3, 5, called 
the orbit of 3 . One stopped after reaching the starting number, but number 2 has not been 
encountered. Therefore, continuing 2, 4, 4, 1, 2 or then 2, 4, 1, and stops having reached the starting 
number. In the third case, one will start from position 1 of the upper row: 1, 5, 3, 3, 1, or then 1, 5, 3, 
and stops after having reached the starting number, but numbers 2 and 4 not encountered. Therefore, 
continuing 2, 4, 4, 2. 
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For the first case, there exists a single cycle: (1, 3, 5, 2, 4). 

For the second case, there exists two cycles: (3, 5)(2, 4, 1). 

For the third case, there exists two cycles: (1, 5, 3)(2, 4). 

The stabilizer is represented by those permutations which keep elements (letters or numbers) at fixed 
points, for example on the same column. 
As seen, these cycles have not common elements and they are called fundamental cycles. 

3.5. Order of a cycle. Having not common elements, the elements of each cycle will be found only 
within this cycle or a power of it. Therefore, the order of a cycle will be equal to the number of 
elements it contains. If a cycle is raised to a power, e.g. 2, each element will be replaced by the 
element found at a place displaced with a unity in the positive sense (to the right). Each power means 
to repeat the same permutation. If one of the cycles above is raised to power 5, each given cycle 
having five elements, each element will be replaced with the element found farther with 5 units, in the 
positive sense, and we obtain just the unit group E . In a two-rows representation, having in each row 
one of the mentioned powers, there is given a permutation row. 

3.6. The notation in the form of a cycle. For example, consider the double-rows permutations:  
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STTS                                           (8 a, b, c) 

and 

.
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3124
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43211
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In cycle form, we obtain: 

.)2,4)(3,1()4,3,1)(3,4,1)(4,3)(2,1(

,)4,3,1(,)3,4,1(;)4,3)(2,1(
1

1

==

===
−

−

TST

TTS
                                                                         (10 a-e) 

4. CYCLIC GROUPS  

A group having all elements powers of the same element is called cyclic group, and the mentioned 
element is called the group generator. As already mentioned each subgroup order divides the order of 
the group. Example of a cyclic group written in two manners, as sum and sequence:  

.:;:;: 0
1

1
EAAEAEG m

m

i

i ==+= ∑
−

=

                                                                                      (11 a, b, c) 

[ ] .:;:;1,1,,: 0 EAAEmiAEG mi ==−∈∀=                                                                        (11 d, e, f) 

If all elements of a group (letters, numbers and subgroups) are powers of an element, the group is by 
definition a cyclic group. If this element is not contained in the group, a supplementary explanation is 

necessary. Let cA  be the smallest power contained in the group for 1=k , with 0: AE = , and in 

general, ( )1−ckA  which for 1=k  and 1=c , and for 1=k  and 6=c  yields 0A  and 15 =A , at the 

period end being 4A . If all elements of a cyclic group act simultaneously, the group is like a 
permutation row. In the case of circular permutations, the last term will be followed by the first one. 

Each group of prime order is a cyclic group. Because the orders of subgroups must divide the order of 
the group, then when it is a prime number p , the latter can be divided only by 1 and by p , the only 
possible maximum subgroup is the whole group, the every element of which should be of order p , 



Andrei Nicolaide 
 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                       Page 6 

except EA =0  (order 1). There follows that the group is composed of powers of A , and the elements 

are of order p . The various properties may be verified by performing the division 
1
1

−
−

x
xm

 for any x . 

5. CYCLIC EQUATION  

Abelian group is a group where the multiplication of any two elements, letters or numbers, as well as 
subgroups, is commutative, therefore ABBA = . 

An equation, irreducible in a number field, having its group cyclic, is called a cyclic equation in the 

mentioned number field say iF . For such an equation of degree n , a permutation will have a single 
cycle. In the case in which the power n  is prime, it is possible to construct, starting from the known 

equation, a sequence over number fields 1+iF  by adjoining to it a necessary quantity. For this 
purpose, if the equation is written in the general usual form, we can use the roots of binomial 
equations. It should be added that due to the form of its terms, it is an Abelian equation. If the first 
term of the cyclic group is the unity, then the order of the group is equal to its degree. 

The roots can also be obtained directly, by simple procedures. 

6. COMPOSITION SEQUENCE  

Consider a group G  and let be 1N  its maximum invariant divisor. Then let 2N  be the maximum 
invariant divisor of 1N , and so on. We obtain the following series and sequence: 

,:;
1

1
ENNEG r

r

i

i =+= ∑
−

=

                                                                                                           (12 a, b) 

.,,;,, 23 ENGENG                                                                                                                       (12 c) 
 

where every composition element as subgroup 1+iN  is the maximum invariant subgroup of iN  but it 
does not mean that it could be maximum invariant subgroup of the preceding elements. The ratio 

1+i

i
N
N  is called composition factor. 

A group can have several maximum invariant divisors. We can see the following cyclic group of  
order 6: 

  ,A  A A 5432 +++++= AAEG                                                                                                      (13) 

and the subgroups have to be searched among the divisor of the order of the group, and they may be 
of orders 3 and 2. Therefore, according to Sub-section 3.3, there are two maximum divisors: 

  .A ,;A ,, 3
2

42
3 ENAEN ==                                                                                                   (14) 

7. METACYCLIC GROUP  

The group the composition factors of which are prime numbers is called metacyclic group.      Every 
group of prime order p  should be a metacyclic group. According to the Galois procedure, after 
having supposed we have adjoined a root (adjoint root), we shall take the first maximum invariant 
subgroup 1H  of G . In this case, the number of permutations not still browsed diminishes, becoming 
equal to 1n . Then, after adjoining another root, the numbers of permutations, not still browsed, 
becomes smaller, equal to 2n , and so on. Therefore, finally we shall obtain several composition 
subgroups represented by the successive maximum invariant subgroups and the corresponding 
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composition factors. There remains to establish how to choose the permutations subgroups. As 
already mentioned, the number of permutations of a subgroup must divide the number of permutations 
of the group to which it belongs. For each of the steps above, it means that we have to verify a smaller 
numbers of equalities, corresponding to a smaller number of roots that have to be adjoined. Therefore, 
referring to the example of Galois for a quartic polynomial, the total number of permutations may be: 
4 ! 24= . The successive subgroups will be: ;1;1;2;4;12;24 id4321sym ====== HHHHHG  

and the composition factors will be: .1;2
1
2;2

2
4;3

4
12;2

12
24: ====f  We can see that every 

composition factor is a prime number. From the above description, there results the Galois conclusion 
that for the considered equation could be solvable by radicals, the composition factors, explained 
above should be prime numbers. Here, the digit 1 is included as prime, although in many works it is 
not accepted its denomination of prime, but keeping all known properties, that in the present case are 
included. 

Each group of prime order is a cyclic group. For this reason, a metacyclic group contains a cyclic 
group. 

7.1. Conjugate quantities. They are defined as follows. Let kα  be a set of quantities which all 

depend on one of them, like of prx /1
11 =  in any number field F  becoming a number field 

( )prFF /1=′ . The quantities ( )kαϕ , and consequently kx  are called as conjugate quantities with 
respect to F , [11, p. 140]. 

7.2. An equation which is solvable by radicals contains a metacyclic group. This result follows 
from the procedure called by Galois reduction of the permutation group of an equation. Consider that 
an equation of degree n  is solvable by radicals. We shall have in view the various radicals which 
occur. We can examine only the case of prime number radicals, because the other cases may be 
reduced to the mentioned one, by expressing the respective numbers using products of prime 

numbers. If we express the various occurring radicals as ,/1 prx =  we can rewrite it as:  

[ ] ,,2;2exp pkki
p

rx p
k ∈⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⋅

π⋅
⋅=                                                                                                 (15) 

where, p  is the smallest number, so that the adjunction of kx  will reduce the group of the given 
equation, while r  belongs to the starting number field F . We shall obtain 1−p  complex numbers (if 

3≥p ) and one equal to the arithmetic radical of modulus r  (if it is a positive real number). The 
adjunction of these radicals will not change the group of the equation, because as mentioned, they 
concern only indices less than p . Assuming that the value so obtained for the roots, and r  has an 
adequate value, one can express the given equation in the form of a binomial product of factors 
( )kxx − , and the numbers of permutations will be reduced with the number of corresponding 
binomials, being a maximum invariant subgroup. The ratio between the permutations group orders 
(namely numbers of permutations), i.e., the value of corresponding composition factor will be 

k
k

k f
H
H

=
+1ord

ord , a prime number. For instance, if we started from a group with n  elements, we find 

the number n !  permutations. After reducing the square roots of unity, we reduce the number of 

permutations to 
2
!n . We have to continue the procedure. After reducing the radical of the third order, 

3=p , starting from the number n ! permutations, we reduce the number to 
p
n!  permutations. If the 

composition factor will be in this case a prime number, the result of the preceding ratio should also be 
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a prime one, otherwise, the group will not be metacyclic, and the equation not solvable by radicals. 
Therefore, the respective equation should be metacyclic. We continue the procedure till we arrive at 
the identical permutation (unit permutation). 

We shall give a simple explanation, for the case of a quartic equation, referring only to explanations 
above, without resorting to the usual ones. According to the definition, the total number of 
permutations, in this case, is !4=n . After adjoining the roots corresponding to 2=p , the next 

number of permutations will be 12
2

24
= . Then, after adjoining the roots corresponding to 3=p , the 

next number of permutations will be 4
3

12
= . Finally, after adjoining the roots corresponding to 

4=p , which being not prime number, will be replaced, as explained, by the product of prime 
numbers, hence we shall use, successively, twice 2=p . The next numbers of permutations will be 

2
2
4
= , and 1

2
2
= . Therefore, we arrive at the identical permutation. With this explanation, we found 

the same result as in the Galois explanation, but avoiding the presentation of permutation groups. 
Thus, the considered equation group contains a metacyclic group. 

It is to be noted that it is possible that any radical does not introduce an imaginary component. Such 
an example can be found in the case of the equation we studied in [12], but for other aims. It still 
remains to prove that if an equation contains a metacyclic group, it is solvable by radicals. For 
proving it, Galois and his successors used a proposition by which all roots of an algebraic equation 
can be obtained from a single root of the Galois transformed equation. In fact, if a group is cyclic, it 
suffices to take a single element of the set of roots, and implicitly all become known.  

7.3. Adjoining the root from a binomial equation. Let us assume that the root 1x  of a normal 
equation ( ) 0=xf , that means irreducible in a number field F , has been known and adjoined to 
number field F . Similarly, also the other roots have successively been introduced. 

Consequently, the considered equation being metacyclic, we obtain a number field F ′  containing all 
roots, including all conjugate roots, and thus the solution of the equation, like previously. Finally, it is 
worth noting that the reason for using the permutation group is for verifying, in principle, that the 
adjoined quantities fulfil the given equation.  

Although the procedure is interesting and logically justified, its practical utilization cannot lead to 
useful results. For clarifying this problem, we performed the following numerical experiment. We 
considered the equation (polynomial) of [9]: 

1
2
3 23 +⋅−= xxy                                                                                                                                 (16) 

and tried to reduce its group by adjoining a root kx  of the binomial equation: 

,qr p =                                                                                                                                                 (17) 

where the right-hand side q  of the equation, belongs to the initial number field, like F , and p  is any 
prime number [9], as previously explained. But, not knowing a value of the roots, we can use anyone, 
assuming the possibility of reducing the equation group. 
At the same time, we made a graphical representation of the function f  as ordinate in terms of the 
abscissae x . The results can be seen in Fig. 1, which is plotted over the abscissae included in the 
domain of the roots. The used Maple commands are given below. 
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Fig. 1. The curves of the polynomial 
function in terms of the abscissae which 
include the roots. Curve 1, obtained by 
Maple plot; Curve 2, obtained after a root 
adjunction. Case of a real root and a pair of 
complex conjugate roots. 

 

The Maple commands (in Maple, the imaginary unit is denoted by I ): 
Line  Solid;    Line Dash;    Plot  Axes normal;    Show  Legenda; Export. 

( )( );fevalfsolve  
Roots of f : 

;6776506988.0]3[
;5386519064.0088825349.1]2[;5386519064.0088825349.1]1[

−=
⋅−=⋅+=

x
IxIx

 

Roots for start adjunctions of g  (in fact the Galois Theory does not imply numerical results): 
;]3[:]3[;]2[:]2[;]1[:]1[ xuxuxu ===  

;]1[:]1[ uu = ;1]2[:]2[ += uu ;1]3[:]3[ += uu  
( ) ( ) ( )( )]3[]2[]1[expand xxxxxxf −⋅−⋅−= ; 
( ) ( ) ( )( )]3[]2[]1[expand uuuuuug −⋅−⋅−= ;  

( );]2.1..8.0,[],,2.1..8.0,[,][ −==−= uggreencolourxfplotmultipleplots  

There follows that the curve 1 (solid line) intersects the axis of abscissae at a single point. Hence, the 
equation has a single real and two complex conjugate roots. In the same figure, we have also 
represented by curve 2 (dashed line), the resulting curve after adjoining roots. The single power to be 
reduced is that corresponding to 2=p . If we select a negative value of q , the equation (17) will 
deliver a pair of complex conjugate roots what, as seen, is acceptable, but we could, as well, select a 
positive value of q . For both selections, the automorphisms and the Galois groups will be of the same 
form.  

In general, a polynomial equation of odd degree should have an odd number of real roots; while a 
polynomial equation of even degree must have an even number of real roots. In the case of Fig. 1, the 
order of the equation is odd, then using the constant term of the equation, we obtain a real root. 
However, for the taken value of 2x  differing by 1.1 , or by 99.0  from the correct value, the obtained 
curve does not intersect the axis of abscissae, at any point within the roots limits, whereas when it 
differs by 1, it intersects this axis at a point. There follows that the procedure, is not adequate for 
solving an equation, but the mentioned difficulty does not influence the Galois condition of solvability 
[9]. It is useful to be noted that if we calculate the value of the discriminant, of the considered 
equation by Maple, we obtain: 

,
2

27),(:Discr −== xydiscrim                                                                                                              (18) 
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what means that the equation has a real root and two roots complex conjugate, hence correct result. 
We shall now give an example different from the previous one. Consider the following equation: 

13 23 +⋅−= xxy ,                                                                                                                                (19) 

we have studied in [12]. Like before, we shall perform the representation of the curve y  for two 
cases, the first according to the given equation, when we know the roots of the equation, and then, 
considering the role of binomials from the case of reducing the group of the equation. The formulae 
and the results we need are the following: 

( )( );fevalfsolve  
Roots of f : 

988805500.2]3[;188598641.0]2[;1774041483.0]1[ ==−= xxx . 

Roots for start adjunctions of g : 
;]3[:]3[;]2[:]2[;]1[:]1[ xuxuxu ===  

;]1[:]1[ uu = ;]2[:]2[ uu = ;2.0]3[:]3[ += uu  
( ) ( ) ( )( )]3[]2[]1[expand xxxxxxf −⋅−⋅−= ; 

=g expand ( ) ( ) ( )( )]3[]2[]1[ uuuuuu −⋅−⋅− ; 
=g ( )],3..2.0,[],,3..2.0,[,][ redcolouruggreencolourxfplotmultipleplots =−==−= ; 

Fig. 2. The curves of the polynomial function 
in terms of the abscissae which include the 
roots. Curve 1, obtained by Maple plot; Curve 
2, obtained after roots adjunction. Case of all 
real roots. 

 

We tried to reduce its group by adjoining a root. In the previous example, we obtained a pair of 
complex conjugate roots. In the case of Fig. 2, the situation of the previous figure is not possible, 
because the curve intersects at three points the axis of abscissae, hence there must be three real roots. 
We shall take 2=p  and select a real positive value of letter q , what yields two real roots. As 
previously, the degree of the equation being odd, resorting to the constant term in the equation, we 
obtain another real root. We calculate the discriminant as previously and obtain 81Discr = , 
 what means that the equation has all three roots real numbers. Such specific situations have not been 
found in the known literature, [2, p. 510]. 

If the group of a polynomial equation is not metacyclic, the equation cannot be solved algebraically 
(i.e., including radicals). 
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8. CONSIDERATIONS ON THE GALOIS GROUP  

We shall give an example, but use notation close to that of Galois, which seems to be best oriented for 
a logical analysis: 

( ) ;073
22 =+−x     ;0166 24 =+− xx    ;731 −+=x     ;732 −−=x  

;733 −+−=x      .734 −−−=x                                                                                 (20) 

The Galois group, will be described in the rational number field Q , and could, in principle, have 24  
permutations. There are several possible definitions for the group of an equation. Let ( ) 0=xf  be the 
general form of a polynomial equation in number field F . The group of this equation, also called 
Galois group, is expressed by the set of permutations of the roots, which do not modify any relation 
among these roots, over the number field F , [11, p. 193]. Hence, the Galois group keeps or permutes 
the roots, according to their type, without modifying the results. 
According to Verriest [11. p. 170], the Galois group is considered being the set of permutations by 
which we can pass from the first to the last root. There is interesting to remark that in the latter 
definition, the condition of the former one is not mentioned, but it is implicitly satisfied. 

We obtained: 

     I = 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

→
→
→
→

44

33

22

11

xx
xx
xx
xx

,    II = 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

→
→
→
→

34

43

12

21

xx
xx
xx
xx

,    III = 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

→
→
→
→

24

13

42

31

xx
xx
xx
xx

,   IV = 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

→
→
→
→

14

23

32

41

xx
xx
xx
xx

.   (21 a) 

It is possible to express the Galois group in cycle form.  

The permutations above, written in the two-rows form, are: 

      I= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

4321

4321

xxxx
xxxx

,  II = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

3412

4321

xxxx
xxxx

,  III = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2143

4321

xxxx
xxxx

,  IV = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1234

4321

xxxx
xxxx

.               (21 b) 

The expressions of these permutations, in cycle form, are: 

     I = E ,   II = ( )21 xx ( )43 xx ,   III = ( )( )4231 xxxx ,   IV = ( )( )3241 xxxx .     (22) 

Summing up the subgroups of permutations, with the usual symbols of the group theory, we obtain: 

( )( ) ( )( ) ( )( )324142314321 ,,,: xxxxxxxxxxxxEG = ,                                                                          (23) 

or according to the notation of [11, p. 170]: 

( )( ) ( )( ) ( )( )324142314321: xxxxxxxxxxxxEG +++= .                                                           (23 a) 

The cyclic form can be directly explained, because it does not keep the same value for any order of 
the roots, different from that of the unit permutation. 
According to Maple, the equation group is: 

}"{",1,""},"Id{","1T1" + ;                                                                                                                      (24) 
 

where the notation is the same as in [4] and [9]. 

9. RELATION BETWEEN THE INDICES OF THE ROOTS OF A SOLVABLE EQUATION  

Another question to be examined is the following. The majority of the authors consider the reduction 
of the equation group. They try to replace the various radical represented by the solution of an 
equation, adjoining binomial expressions, starting with the smallest radical which can lead to the 
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reduction of the permutation group and the solution by radicals. Galois stated that, in the case of 
solvability, a certain relation among the indices of roots in the permutation group exists, but did not 
give a detailed proof. His followers, Serret [13] and Picard [2] presented some proofs. According to 
our opinion, the clear and simplest deduction results from the book of Verriest, although not given or 
expressed there as such. As follows, no calculations are required. 

An equation solvable by radicals is a metacyclic equation [11, p. 277]. Consequently its group is a 
metacyclic one. All its composition factors are prime numbers [11, p. 81], and its group is a cyclic 
group [11, p. 81]. All prime groups are cyclic groups [11, p. 25]. But in the case of a cyclic group, the 
number of permutations is equal to that of the equation degree. There follows that every solvable 
equations must have a similar group, and the equations may be considered as similar. Therefore, the 
index of the roots will fulfil the same number order. It is worth noting that if we use the permutation 
group valid for a metacyclic group, it is not valid for any equation type. If, for example, the 
expression of a root contained two radicals of second degree of different expressions, a single 
adjunction of a root could not satisfy two different conditions. 
The example gives for some entry numbers, the output numbers, denoted by z , which repeat the order 
of the former. 
In this case, the permutation group can be written so that the number of permutations (i.e., 
permutation rows) should be equal to that of the equation degree, as below, [1, Proposition 7] in 
expression (25). It follows that in the group of one equation of degree p , solvable by radicals, the 
permutation succession should be of the form in (26) and (27). 
Concerning the calculation of the indices, respecting the result for cyclic and metacyclic equations, it 
can be presented, very simply, using Maple 12 program for changing permutation indices. 

Maple 12 Program 

5
;if end )print( then 0 if

;mod:
;:

;5:
;4:;3:

;2:

nu
nzu

rqiz
n

rq
i

=
=

+⋅=
=

==
=

 

The numbers are like examples. 

Symbols 

;
;mod:

;:
;:

;,
;

periodalongnumberu
nzu

rqiz
rowpernumbersn

numberswholerq
indexinitiali

−
=

+⋅=
−=
−

−

 

 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

43215
32154
21543
15432
54321

:S , (25) 

In the simplest form 

1+→ kk xx             (26) 
 

In the more general form 

bkak xx +→                 (27) 

a  and b  integer constants 

We did not find an intuitive remark of this content, in the known literature. 

10. CONCLUSION  
We should mention that the main steps have been the Galois transform of the given equation and the 
concept of root group, because they emphasized the existence of the circular permutation character of 
transformed roots arriving at metacyclic equations. Certain interesting subjects of the Galois Theory, 
concerning the solvability of equations and other questions, were developed by many authors, but in 
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most cases, they have avoided the difficulty which blocks, in many cases, their applicability. Several 
such cases have been analysed and intuitive examples for avoiding certain difficult situations have 
been explained in the present paper. We must add the mentioned circumstances do not affect the 
utility and importance of the usual Galois condition of solvability.  
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