[J, K]- Set vertex-edge and edge-vertex domination of path graphs

N. Murugesan, P. Elangovan*
PG and Research Department of Mathematics Government Arts College, Coimbatore
*Corresponding Author: P. Elangovan, PG and Research Department of Mathematics Government Arts College, Coimbatore

Abstract

Domination is an Advanced Research in Graph Theory. There are various dominating sets defined by graph Theorists. In this paper, one such dominating set is known as [J, K]-setvertex edge and edgevertexdomination of path graphs have been discussed.The generalization of the graphs, the number of dominating sets, and the number of dominating vertices and edges have been discussed.

Keywords: [j, k] - set vertex- edge dominating set, [j, k] - set vertex- edge domination number.
[j, k] - set edge-vertex-dominating set, [j, k] - set edge-vertex- domination number.

1. INTRODUCTION

The basic definitions and concepts of graph theory have been learned from D.B.West [9]. Fundamental definitions of dominations and various basic theorems on this were studied by T.W.Haynes et. al[2].
[1,2] Dominations in line graphs have been introduced by N.Murugesan and Deepa s. Nair[4]. Definitions and fundamentals of graph domination were discussed by Arash Behzad et. al[1].
Mustapha Chellali et. al[5] have explained [1,2]- the domination of graphs in their paper. Various theorems have been discussed by Xiaojing Yang et. al[8]
[1. K] domination of graphs was explained by E.Sampath Kumar et. al[7]. Edge-related domination has been explained in $[3,6]$

2. Preliminaries

Let $G(V, E)$ be a simply connected graph with vertex set V and edge set E. Order and size of the graph is $n=|v|$ and $m=|E|$ Open and closed neighbourhood of the vertex and edges $N(v)=\{u \in V \mid u v \epsilon$ $E\}, N[v]=N(v) u\{v\}$ and $N\left(e_{i}\right)=\left\{e_{j} \in E_{j}\right\}, i, j=1,2,3, \ldots \ldots$.
The number of edges incident to a vertex v is the vertex degree, $\operatorname{deg}(v)=I N(v) \mid$. The edge degree of the edge is defined as the number of neighbors of e i.e. $|\mathrm{N}(\mathrm{u}) \mathrm{uN}(\mathrm{v})|-2$.

Definition: 2.1 A subset D of the vertex set V of a graph G is a dominating set if every vertex in the complement of D in V has a neighbor in D .

Definition: 2.2 A Minimum dominating set D in a graph G is a [$\mathrm{j}, \mathrm{k}]$ - dominating set if there are vertices in the complement of D in G that have at least j and atmost k number of neighbors in D for $\mathrm{j}=1$ and $\mathrm{k}=2$.
Definition: 2.3 A subset D of the vertex set V is said to be a vertex-edge dominating set of the graph G if for each edge $u v$ in G, there is a vertex w in D such that $w \in\{u, v\}$ or w dominates at least one of u,v. The vertex edge domination number $\gamma(\mathrm{G})$ is the minimum cardinality of a vertex-edge dominating set of G .

Definition: 2.4 A subset D of E is an edge-vertex dominating set (ev-ev-dominating set) of G if every vertex of graph G is ev dominated by at least one edge of G.
Symbol: $\quad 1 . \mathrm{D}_{(\mathrm{j}, \mathrm{k})}\left(\mathrm{P}_{\mathrm{V}, \mathrm{E}}\right)_{\mathrm{n}} \mid$ or $\left|\mathrm{D}_{(\mathrm{j}, \mathrm{k})}\left(\mathrm{P}_{\mathrm{E}, \mathrm{V}}\right)_{\mathrm{n}}\right|$: Number of dominating sets

$$
\text { 2. } \gamma_{[j, k\}}\left(\mathrm{P}_{\mathrm{V}, \mathrm{E}}\right)_{\mathrm{n}} \text { or } \gamma_{[\mathrm{j}, \mathrm{k}\}}\left(\mathrm{P}_{\mathrm{E}, \mathrm{~V}}\right)_{\mathrm{n}} \quad: \text { Number of dominating vertices or edges }
$$

3. [J, K] - SET VERTEX-EDGE DOMINATION

Theorem 3.1 the number of [1,1$]$ - set vertex-edge domination of path graph is
$\left|D_{(1,1)}\left(P_{V, E}\right)_{k}\right|=\{k-2, \quad k=3,4,5 \ldots$.
proof: Let $v_{1}, v_{2}, v_{3} \ldots \ldots \ldots \ldots \ldots . v_{n}$ are the vertices and e_{1}, e_{2} \qquad ..e_{n-1} are the edges of the path graph. $\operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{n}\right)=1$. The $\operatorname{deg}\left(v_{i}\right)=2, i=2,3,4 \ldots \ldots . n-1$. The vertices v_{i}, $i=2,3, \ldots \ldots \ldots$ dominate the vertices v_{i} or $v_{j}, i=1,2,3 \ldots n-\ldots \ldots . n-2$ and $j=3,4,5$. n.
Vertices $v_{i}, I=2,3 \ldots \ldots \ldots(n-1)$ dominates $v_{j}, j=1,3,2,4,3,5 \ldots \ldots$.
Thereforevertex-edge dominating vertices are $\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4} \ldots \ldots . . \mathrm{v}_{\mathrm{k}+1}\right\}$
The Generalized form of [1,1] - dominating sets of the vertex edge are

$$
\mathrm{D}_{(1,1)}\left(\mathrm{p}_{\mathrm{v}, \mathrm{E}}\right)_{\mathrm{k}}=\left\{\mathrm{v}_{\mathrm{k}-1}, \mathrm{k}=3,4,5, \ldots \ldots \ldots\right.
$$

and the number of dominating vertices are
$\gamma_{[1,1]}\left[\left(\mathrm{P}_{\mathrm{V}, \mathrm{E}}\right)_{\mathrm{k}}\right]=\mathrm{k}-2$
Theorem 3,2. The number of $[1,2]$ - set vertex-edge domination of path graph p_{n} is

$$
\left|\mathrm{D}_{(1,2)}\left[\left(\mathrm{P}_{\mathrm{V}, \mathrm{E}}\right)_{\mathrm{K}}\right]\right|=\{\mathrm{k}-2, \mathrm{k}=4,5,6
$$

\qquad
Proof: The vertex-edge dominating sets of the path P_{4} are $\left\{v_{1}, v_{3}\right\}$ and $\left\{v_{2}, v_{4}\right\}$. The vertex - edge dominating sets of the path P_{5} is $\left\{\mathrm{v}_{1}, \mathrm{v}_{3}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{4}\right\}$ and $\left\{\mathrm{v}_{3}, \mathrm{v}_{5}\right\}$
Proceeding like this we could find the vertex-edge dominating sets of the path

$$
P_{\mathrm{n}} \text { is }\left\{\mathrm{v}_{1}, \mathrm{v}_{3}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{3}, \mathrm{v}_{5}\right\} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\left\{\mathrm{v}_{\mathrm{n}-2}, \mathrm{v}_{\mathrm{n}}\right\}
$$

The Generalized form of [1,2] - dominating sets of the vertex-edge of the path graph P_{n} is
When $\mathrm{n}=\mathrm{k}+3$ is, $\mathrm{k}=1,2,3 \ldots \ldots$.
$\mathrm{D}_{(1,2)}\left[\left(\mathrm{P}_{\mathrm{v}, \mathrm{e}}\right)_{\mathrm{n}}\right]=\left\{\mathrm{v}_{\mathrm{k},}, \mathrm{v}_{\mathrm{k}+2}, \mathrm{k}=1,2,3 \ldots \ldots\right.$. and the number of dominating vertices in each set is
$\gamma_{[1,2]}\left[\left(\mathrm{P}_{\mathrm{v}, \mathrm{e}}\right)_{\mathrm{n}}\right]=\mathrm{k}$

4. [J, K] - EDGE- VERTEX DOMINATION

Theorem: 4.1. The number of $[1,1]$ - set edge - vertex domination of path graph P_{n} when $\mathrm{n}=\mathrm{k}+1$, $\mathrm{k}=1,2,3$, etc is
$\left|D_{[1,1]}\left(P_{E, v}\right)_{n}\right|=\{k, k=1,2,3$.
Proof: Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3} \ldots \ldots \ldots \ldots \ldots . \mathrm{v}_{\mathrm{n}}$ are the vertices and $\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}$ \qquad ..e_{n} are the edges of the path graph P_{n}. For the path graph P_{2}, edge e_{1} dominates the vertex v_{1} or v_{2}. For the graph P_{3} edge e_{1} dominates the vertex v_{1} or v_{2}, and edge e_{2} dominates the vertex v_{2} or v_{3}. Proceeding like this we get for the path graph P_{n}, e_{n-1}, when $n=2,3,4, \ldots$ Dominates the vertices v_{k} or $\mathrm{v}_{\mathrm{k}+1}, \mathrm{k}=1,2,3 \ldots \ldots \ldots \ldots$.
The number of $[1,1]$ domination of the edge - vertex when $n=k+1$ is
$\left|D_{[1,1]}\left(P_{e, v}\right)_{n}\right|=k, k=1,2,3$. \qquad
The generalized form of $[1,1]$ - set edge -vertex when $n=k+1$ is
$D_{[1,1]}\left(P_{e, v}\right)_{n}=\left\{e_{k}\right.$, when $k=1,2,3$
Therefore, the number of dominating edges in each dominating set is

$$
\gamma_{[1,1]}\left(\mathrm{P}_{\mathrm{E}, \mathrm{v}}\right)_{\mathrm{n}}=\mathrm{k}
$$

Theorem 4.2: The number of [1,2]- set edge - vertex domination of path graph when $\mathrm{n}=\mathrm{k}+1, \mathrm{k}=1,2,3$
\qquad is
$D_{[1,2]}\left(P_{E, v}\right)_{n}=\{k$, when $k=1,2,3$ \qquad
Proof: Let $\mathrm{v}_{1,} \mathrm{v}_{2}, \mathrm{v}_{3}$ \qquad . v_{n} are the vertices and $\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}$ \qquad .e_{n-1} are the edges of the path graph P_{n}. For the path graph P_{3} edges e_{1} and e_{2} dominates the vertex v_{2} and e_{1} dominates v_{1} or v_{2} and edge e_{2} dominates v_{2} or v_{3}. For the graph p_{4}, edges e_{1} and e_{2} dominate the vertex v_{2}, and edges e_{2} and e_{3} dominate the vertex v_{3}. Proceeding like this up to the path graph P_{n}, e_{n-1}, when $n=2,3,4$, Dominates the vertices $\mathrm{v}_{\mathrm{k}}, \mathrm{k}=1,2,3$ \qquad .n-1.
The number of [1,2] - set edge - vertex domination of the path graph P_{n} when $n=k+1$ is

$$
\left|\mathrm{D}_{[1,2]}\left(\mathrm{P}_{\mathrm{e}, \mathrm{v}}\right)_{\mathrm{n}}\right|=\{\mathrm{k}+1, \mathrm{k}=1,2,3
$$

\qquad
The generalized form of $[1,2]-$ set edge - vertex when $n=k+1$ is

$$
\mathrm{D}_{[1,2]}\left(\mathrm{P}_{\mathrm{e}, \mathrm{v}}\right)_{\mathrm{n}}=\left\{\mathrm{e}_{\mathrm{k}}, \mathrm{e}_{\mathrm{k}+1,}, \mathrm{k}=1,2,3 .\right.
$$

Therefore the number of dominating edges in each dominating set when $n=k+2$, $\mathrm{k}=1,2,3$. is $\gamma_{[1,1]}\left(\mathrm{P}_{\mathrm{E}, \mathrm{v}}\right)_{\mathrm{n}}=\mathrm{k}+1, \mathrm{k}=1,2,3$.

5. CONCLUSION

In this paper [J,K]- set vertex-edge and edge-vertex domination of the path graph has been discussed in detail.
6. Acknowledgement we would like to thank all the people who helped us with this paper, without their support and guidance the paper could not been completed.

References

[1] Arash Behzad, Mehdi Behzad and Cheryle Praeger Fundamental domination in graphs, the University of California, Shahid Beheshti University and University of Western Australia, Aug 2008.
[2] T.W. Haynes, M.T Hedetniemi and P.J. Slater, fundamentals of domination in a graph, Marcal Decker, inc New York 1998, pp1-353.
[3] V. Mohana Selvi and k.Deivakumarai [1,2]- edge domination in product-related graphs, International Journal of Pure and Applied Mathematics, volume 113,172-179,2017
[4] 4.N.Murugesan and Deepa.s.Nair [1,2] Domination in line graphs, American J of computational and applied mathematics, volume 3(3), 162-167/2018, DOI 1059 23j Ajeam 20130303. cz.
[5] Mustapha Chellali, Teresaw, Haynes, Stephen T Hedetniemi, Alice Macrae, [1,2]- sets in graphs, discrete applied mathematics, 162:2885-2893.2013.
[6] 6.Narayana .B. Ragavalakshmi. V.sudhakaraiah.A. The edge domination in prime square dominating graphs IJCSMC, vol 6, issue 1, pg 182-189, Jan 2017.
[7] 7.E. Sampath Kumar [I,k]- domination in a graph J. Maths, Phys SCI Vol 22 No5. 613-619.1988.
[8] 8. Xiaojing Yang, Baoyindureng Wu,[1,2] - domination in graphs, Discrete Applied Mathematics,175,7986/2014.
[9] 9. D.B. West "Fundamental concept" introduction to graph theory, $2^{\text {nd }}$ edition Pearson India education services Pvt Ltd 2015, PPI -66.

[^0]
[^0]: Citation: N. Murugesan and P. Elangovan, [J, K]- Set vertex-edge and edge-vertex domination of path graphs .International Journal of Scientific and Innovative Mathematical Research (IJSIMR), vol. 12, no. 1, pp. 1-3, 2024. Available : DOI: https://doi.org/ 10.20431/2347-3142.1201001

 Copyright:© 2024 Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

