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1. INTRODUCTION  

Mellacheruvu Krishna Murty and U. MadanaSwamy (Professors of Andhra University)[2] introduced 

the concept of generalised lattice. The author P.R.Kishore [3,4] developed the theory of generalised 

lattices that can play an intermediate role between the theories of lattices and posets. The concepts 

metrized lattice and autometrized lattice is known from Leo Lapidus [5,6]. Later the author 

P.R.Kishore introduced and developed the concepts Brouwerian generalised lattice in [8] and 

generalised lattice metrized space (gl-metrized space) in [9, 10]. In this paper section 2 contains some 

preliminary concepts that are from the references. In section 3 discussed about the 3-relation gl-

betweenness on a generalised lattice which is already introduced in [9]. In section 4 introduced and 

discussed the concept autometrized generalised lattice.  

2. PRELIMINARIES 

This section contains some preliminaries from the references those are useful in the next sections. The 

concepts of generalised lattice and distributive generalised lattice are known from [3,4]. 

Definition 2.1 [Kishore [9]] Let P be a generalised lattice and a,b,c ∈ P. Then b is said to be gl-

between a and c in P if ML(mu(ML{a, b}∪ ML{b, c})) = {b} = mu(ML(mu{a,b}∪ mu{b,c})), 

denoted by (a,b,c) ∈ glb. 

Definition 2.2 [Kishore [9]] Let S be a set and P be a generalised lattice having least element 0. If 

there exists a map d: S×S→P such that (i) d(a,b)≥ 0 and d(a,b) = 0 ⟺ a=b (ii) d(a,b) = d(b,a) (iii) 

d(a,c) ∈ L(mu(d(a,b), d(b,c))), then the ordered pair (S,d) is called a generalised lattice metrized space 

(gl-metrized space). We denote d(a,b) by a∗ b. 

Theorem 2.3 [Kishore [10]] Let P be a generalised lattice and a, b, c ∈ P. Then (a, b, c) ∈ glb implies 

(s, b, t) ∈ pob for all s∈ ML{a, c} and t∈ mu{a, c}. 

Definition 2.4 [Kishore [10]] Let P be a generalised lattice and a, b, c ∈ P. Then a, b, c are said to 

satisfy the triangular inequality in P if a∈ L(mu{b, c}), b ∈ L(mu{c, a}), c∈ L(mu{a, b}), denoted by 

(a, b, c)∈ glt. 

3. GL-BETWEENNESS 

Theorem 3.1 Let P be a generalised lattice and a, b, c ∈ P. Then b = c implies (a, b, c) ∈ glb and (a, c, 

b) ∈ glb. 
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Proof: Suppose b = c. Consider mu(ML{a, b} ∪ ML{b, c}) = mu(ML{a, b} ∪ ML{b, b}) = 

mu(ML{a, b} ∪ {b}) = {b}. Consider ML(mu{a, b}∪ mu{b, c}) = ML(mu{a, b}∪ mu{b, b}) = 

ML(mu{a, b} ∪ {b}) = {b}. Therefore (a, b, c)∈ glb and (a, c, b)∈ glb. 

Theorem 3.2 Let P be a generalised lattice and a, b, c, d∈ P. Then (a, b, c)∈ glb and (a, d, b)∈ glb 

implies (d, b, c)∈ glb. 

Proof: Suppose (a, b, c)∈ glb and (a, d, b)∈ glb. Then mu(ML{a, b}∪ ML{b, c}) = {b} = ML(mu{a, 

b}∪ mu{b, c}) and by theorem 2.3 we have (s, d, t)∈ pob that is s≤ d ≤ t for all s∈ ML{a, b} and t∈ 

mu{a, b}. To show that (d, b, c)∈ glb: Consider L(mu(ML{d, b}∪ ML{b, c})) = L({d, b}) ∨ L({b, c}) 

= (L(d)∧ (L({a, b})∨ L({b, c}))) ∨ L({b, c}) ≥ (L(d)∧ L({a, b}))∨ L(d)∧ L({b, c}) ∨ L({b, c}) ≥ 

(L(d)∧ L(s))∨ (L(d)∧ L({b, c}))∨ L({b, c}) = L(s)∨ L({b, c}) for all s∈ ML{a, b}. This implies 

L(mu(ML{d, b}∪ ML{b, c})) ≥  (L s ∨  L  b, c  )s ∈ ML  a,b .  This implies L(mu(ML{d, b}∪ 

ML{b, c})) ≥ L({a, b})∨ L({b, c}) = L(mu(ML{a, b}∪ ML{b, c})) = L(b). We know that 

L(mu(ML{d, b}∪ ML{b, c})) = L({d, b}) ∨ L({b, c}) ≤ L(b). That is L(mu(ML{d, b}∪ ML{b, c})) = 

L(b). Then mu(ML{d, b}∪ ML{b, c}) = {b}. Similarly we can prove ML(mu{d, b}∪ mu{b, c}) = 

{b}. Therefore (d, b, c)∈ glb.⊡ 

Theorem 3.3 Let P be a generalised lattice and a, b, c, d, x∈ P. Then (a, b, c)∈ glb, (a, d, b)∈ glb and 

(a, c, x)∈ glb implies (d, c, x)∈ glb. 

Proof: Suppose (a, b, c)∈ glb, (a, d, b)∈ glb and (a, c, x)∈ glb. Since (a, c, x)∈ glb, we have mu(ML{a, 

c}∪ ML{c, x}) = {c} = ML(mu{a, c}∪ mu{c, x}). Since (a, b, c)∈ glb, (a, d, b)∈ glb; by theorem 2.3 

we have s≤ b for all s∈ML{a, c} and p≤ d for all p∈ ML{a, b}. To show that L({a, c})⊆ L(d): Let s∈ 

ML{a, c}. Then s≤ a and s≤ b, that is s∈L({a, b}). This implies there exists p∈ML{a, b} such that 

s≤p. Then s≤ p ≤ d for all s∈ML{a, c}. This implies L(s)⊆L(d) for all s∈ ML{a, c}. Therefore L({a, 

c})⊆ L(d). To show that (d, c, x)∈ glb: Consider L(mu(ML{d, c}∪ ML{c, x})) = L({d, c})∨ L({c, x}) 

= (L(d)∧ (L({a, c})∨ L({c, x})))∨ L({c, x}) ≥ (L(d)∧ L({a, c}))∨ (L(d)∧ L({c, x}))∨ L({c, x}) = 

L({a, c})∨ L({c, x}) = L(mu(ML{a, c} ∪ ML{c, x})) = L(c)≥ (L(d)∧ L(c))∨ (L(c)∧ L(x)) = 

L(mu(ML{d, c}∪ ML{c, x})). Therefore L(mu(ML{d, c}∪ ML{c, x})) = L(c). This implies 

mu(ML{d, c}∪ ML{c, x}) = {c}. Therefore (d, c, x)∈ glb.⊡ 

4. AUTOMETRIZED GENERALISED LATTICES 

Definition 4.1 Let P be a generalised lattice with least element 0. If there is a map d: P×P → P such 

that (i) a∗ b ≥ 0 and a∗ b = 0⇔ a = b (ii) a∗ b = b∗ a (iii) a∗ c ∈ L(mu{a∗ b, b∗ c}), then P is called an 

autometrized generalised lattice.  

Note: Every autometrized generalised lattice is a gl-metrized space. 

Definition 4.2 Let P be an autometrized generalised lattice with least element 0. Then P is called 

regular if a∗ 0 = a for all a∈ P. 

Definition 4.3Anautometrizedgenerlised lattice P is said to be distributive if P is a distributive 

generalised lattice. 

Theorem 4.4 Let P be a regular distributive autometrized generalised lattice. Then for any a,b∈ P we 

have ML(mu{a, b}) = ML(mu(ML{a, b}∪{a∗ b})).  

Proof: Consider the triangle ΔP(a, 0, b). By definitions 4.1 and 4.2, we have a∗ b ∈ L(mu{a∗ 0, 0∗ b}) 

= L(mu{a, b}), a = a∗ 0 ∈ L(mu{a∗ b, b∗ 0}) = L(mu{a∗ b, b}) and b = b∗ 0 ∈ L(mu{b∗ a, a∗ 0}) = 

L(mu{b∗ a, a}) = L(mu{a∗ b, a}). Then by definition 2.4 we have (a∗ b, a, b)∈ glt. This implies we 

get L(a)∨ L(b) = L(a)∨ L(a∗ b) = L(b)∨ L(a∗ b) = L(a)∨ L(b)∨ L(a∗ b). Consider L(mu{a, b}) = L(a)∨ 

L(b) = (L(a)∨ L(a∗ b))∧ (L(b)∨ L(a∗ b)) = (L(a)∧ L(b))∨ L(a∗ b) = L({a, b})∨ L(a∗ b) = L(mu(ML{a, 

b}∪{a∗ b})). Therefore ML(mu{a, b}) = ML(mu(ML{a, b}∪{a∗ b})).⊡ 
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