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1. INTRODUCTION  

Mellacheruvu Krishna Murty and U. MadanaSwamy (Professors of Andhra University)[2] introduced 

the concept of generalised lattice. The author P.R.Kishore [3,4,5,6] developed the theory of 

generalised lattices that can play an intermediate role between the theories of lattices and posets. Later 

the author P.R.Kishore introduced and developed the concept Brouwerian generalised lattice in [10] 

and the concept generalised lattice metrized space (gl-metrized space) in [11]. In this paper section 2 

contains some preliminary concepts that are from the references. In section 3 introduced and 

discussed about a 3-relation generalised lattice triangular inequality (gl-triangular inequality) on a 

generalised lattice. In section 4 discussed about the 3-relation generalised lattice betweenness (gl-

betweenness) which is already introduced in [11]. 

2. PRELIMINARIES 

This section contains some preliminaries from the references those are useful in the next sections. The 

concepts of generalised lattice, subgeneralised lattice and distributive generalised lattice are known 

from [3,4,5]. 

Definition 2.1 [Kishore [11]] Let P be a generalised lattice and a,b,c∈ P. Then b is said to be gl-

between a and c in P if ML(mu(ML{a, b}∪ ML{b, c})) = {b} = mu(ML(mu{a,b} ∪ mu{b,c})), 

denoted by (a,b,c) ∈ glb. 

Kishore [11] observed that the 3-relation glb has transitivity t1. 

Definition 2.2 [Kishore [11]] Let S be a set and P be a generalised lattice having least element 0. If 

there exists a map d: S × S ⇢ P such that (i) d(a,b) ≥ 0 and d(a,b) = 0 ⟹ a= b (ii) d(a,b) = d(b,a) (iii) 

d(a,c) ∈ L(mu(d(a,b), d(b,c))), then the ordered pair (S,d) is called a generalised lattice metrized space 

(gl-metrized space). We denote d(a,b) by a ∗ b. 

Lemma 2.3 [Kishore [6]] Let P be a distributive generalised lattice. Then for any a, b, c ∈ P we have 

(i) mu(ML{a,b} ∪ {c}) = mu(ML(mu{a, c}∪ mu{b, c})) (ii) ML(mu{a,b}∪ {c}) = ML(mu(ML{a, 

c}∪ ML{b, c})). 
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3. GL-TRIANGULAR INEQUALITY 

Definition 3.1 Let P be a generalised lattice and a, b, c∈ P. Then a, b, c are said to satisfy the 

triangular inequality in P if a∈ L(mu{b, c}), b∈ L(mu{c, a}), c∈ L(mu{a, b}), denoted by (a, b, c)glt. 

Note: Let P be a generalised lattice. Then by definition 3.1 we have glt = {(a,b,c)∈ P ×P× P | (a, b, 

c)glt} = {(a,b,c)∈ P
3
 | a∈ L(mu{b, c}), b∈ L(mu{c, a}), c∈ L(mu{a, b})} is a 3-relation on P. 

Theorem 3.2 Let P be a distributive generalised lattice and a, b, c∈ P. Then (a, b, c)∈ glt if and only if 

ML(mu{a, b}) = ML(mu{a, c}) = ML(mu{b, c}) = ML(mu(ML{a, c} ∪ ML{b, c})). 

Proof: Suppose (a, b, c)∈ glt. Then a∈ L(mu{b, c}), b∈ L(mu{c, a}), c∈ L(mu{a, b}). This implies 

L(a) ⊆ L(mu{b, c}) = L(b)⋁ L(c), L(b)⊆ L(mu{c, a}) = L(c) ⋁ L(a), L(c)⊆ L(mu{a, b}) = L(a) ⋁ 

L(b). That is L(a) ⋁ L(b) = L(b) ⋁ L(c) = L(c) ⋁ L(a) = L(a) ⋁ L(b) ⋁ L(c). Therefore L(mu{a, b}) = 

L(mu{b, c}) = L(mu{c, a}) = L(mu(ML(mu{a, b}) ∪ {c})). By lemma 2.3 we have mu(ML{a,b} ∪ 

{c}) = mu(ML(mu{a, c} ∪ mu{b, c})). This implies L(mu{a, b}) = L(mu{b, c}) = L(mu{c, a}) = 

L(mu(ML(mu{a, c} ∪ mu{b, c}))). Therefore ML(mu{a, b}) = ML(mu{b, c}) = ML(mu{c, a}) = 

ML(mu(ML(mu{a, c} ∪ mu{b, c}))).□ 

4. GL-BETWEENNESS 

Definition 4.1 Let P be a poset and a, b, c ∈ P. If a ≤ b ≤ c then we say that b is poset between a and 

c, denoted by (a, b, c)∈ pob. 

Theorem 4.2 Let P be a generalised lattice and a, b, c ∈ P with a ≤ c. Then (a, b, c) ∈ pob if and only 

if (a, b, c) ∈ glb. 

Proof: Suppose (a, b, c) ∈ pob, that is a≤ b≤ c. To show that (a, b, c)∈ glb: Since a≤ b≤ c, we have 

ML{a, b} = {a}, ML{b, c} = {b}, mu{a, b} = {b} and mu{b, c} = {c}. This implies mu(ML{a, b} ∪ 

ML{b, c}) = mu{a, b} = {b} and ML(mu{a, b} ∪ mu{b, c}) = ML{b, c} = {b}. Therefore mu(ML{a, 

b} ∪ ML{b, c}) = {b} = ML(mu{a, b}∪ mu{b, c}), that is (a, b, c)∈ glb. Conversely suppose (a, b, 

c)∈ glb. To show that (a, b, c)∈ pob: Consider L(mu{a, b}) ∩ L(c) = (L(a) ∨ L(b)) ∧ L(c) ≥ L(a) ∨ 

(L(b) ∧ L(c)) = L(a) ∨ (L(a) ∧ L(b)) ∨ (L(b) ∧ L(c)) = L(a) ∨ (L({a, b}) ∨ L({b, c})) = L(a) ∨ 

L(mu(ML{a, b} ∪ ML{b, c})) = L(a) ∨ L(b). Therefore L(b) ⊆ L(a) ∨ L(b) = L(mu{a, b}) ∩ L(c) ⊆ 

L(c), that is b ≤ c. Similarly we can prove L(a) ⊆ L(a) ∨ (L(b)∧ L(c)) ⊆ (L(a) ∨ L(b)) ∧ L(c) = L(b) ∧ 

L(c) ⊆ L(b), that is a ≤ b. Therefore a ≤ b ≤ c, that is (a, b, c)∈ pob.□ 

Theorem 4.3 Let P be a generalised lattice. Then (a, b, c) ∈glb⟺ (c, b, a) ∈ glb. 

Proof: Suppose (a, b, c) ∈ glb. Then by definition 2.1, we have ML(mu(ML{a, b}∪ ML{b, c})) = {b} 

= mu(ML(mu{a,b}∪ mu{b,c})). This implies ML(mu(ML{b, a}∪ ML{c, b})) = {b} = 

mu(ML(mu{b,a}∪ mu{c,b})). Therefore (c, b, a) ∈ glb. Therefore we proved that (a, b, c) ∈ glb ⟹ 

(c, b, a) ∈ glb. Similarly we can prove that (c, b, a) ∈ glb ⟹ (a, b, c) ∈ glb.□ 

Theorem 4.4 Let P be a generalised lattice and a, b, c  ∈ P. Then (a, b, c)∈ glb implies (s, b, t)∈ pob 

for all s∈ML{a, c} and t∈ mu{a, c}. 

Proof: Suppose (a, b, c)∈ glb. Then by definition 2.1 we have ML(mu(ML{a, b} ∪ ML{b, c})) = {b} 

= mu(ML(mu{a,b}∪ mu{b,c})). This implies L({a, c}) = L(mu{a,b}) ∩ L(mu{b,c}) ∩ L({a, c}) = 

L(mu{a,b} ∪ mu{b,c})∩ L({a, c}) = L(b) ∩ L({a, c}). This implies  L(s)s ∈ ML{a,c}  = L({a, c}) ⊆ 

L(b). This implies L(s) ⊆L(b) for all s ∈ ML{a, c}, that is s ≤ b for all s ∈ ML{a, c}. Similarly we 

can prove  U(t)t ∈ mu{a,c}  = U({a, c}) = U(b) ∩ U({a, c}) ⊆ U(b). This implies U(t) ⊆ U(b) for all t ∈ 

mu{a, c}, that is b ≤ t for all t ∈ mu{a, c}.Therefore s ≤ b ≤ t for all s ∈ ML{a, c} and t ∈ mu{a, c}, 

that is (s, b, t) ∈ pob for all s ∈ ML{a, c} and t ∈ mu{a, c}.□ 
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