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1. INTRODUCTION  

Mellacheruvu Krishna Murty and U. MadanaSwamy (Professors of Andhra University)[6] introduced 

the concept of generalised lattice. The author P.R.Kishore [2,3,4] developed the theory of generalised 

lattices that can play an intermediate role between the theories of lattices and posets. The concept of 

Lattice metrized space (L-metrized space) is known from Leo Lapidus [5,7] and later in [8] the 

concept of Brouwerian generalised lattice introduced and developed by the author P.R.Kishore. In this 

paper section 2 contains some preliminary concepts that are from the references. In section 3 

introduced two kinds of transitivity properties t1, t2 and generalised lattice betweenness (gl-

betweeness) relation in a generalised lattice. Proved that the gl-betweeness relation satisfies the 

transitivity t1. In section 4 introduced the concept generalised lattice metrized space (gl-metrized 

space), imagined triangles, sides of the triangles and observed their properties. Finally introduced a 

relation P-linear (Pl) in a gl-metrized space and proved that it satisfies the transitivity t2. 

2. PRELIMINARIES 

This section contains some preliminaries from the references those are useful in the next sections.  

[Murty [6]] For any finite subset A of a poset P, define L(A) = {x є P | x ≤ a for all a є A} and U(A) = 

{x є P | a ≤ x for all a є A}.  Then the sets L(P) = {L(A) | A is a finite subset of P} and U(P) = {U(A) | 

A is a finite subset of P} are semi lattices under set inclusion. 

Definition 2.1 [Murty [6]] Let (P, ≤) be a poset. P is said to be a generalised meet semilattice if for 

every non empty finite subset A of P, there exist a non-empty finite subset B of P such that, x є L(A) 

if and only if x ≤ b for some b є B. P is said to be a generalised join semilattice if for every non empty 

finite subset A of P, there exist a non-empty finite subset B of P such that, x є U(A) if and only if b ≤ 

x for some b є B. P is said to be a generalised lattice if it is both generalised meet and join semilattice. 

[Murty [6]] It is observed that if P is a generalised meet (join) semilattice, then for any L(A) 

єL(P)(U(A) єU(P)) there exists a unique finite subset B of P such that L(A)= L(b)b є B  (U(A) = 

 U(b)b є B ) and the elements of B are mutually incomparable and the set is denoted by ML(A) 

(mu(A)).If a posetP is a generalised lattice then (L(P), ⊆) and (U(P), ⊆) are lattices. 

3. GENERALISED LATTICE BETWEENNESS (GL-BETWEENNESS) 

Definition 3.1 Let P be a generalised lattice and θ⊆ Px P x P = P3. Then θ  is said to have the property 

of transitivity t1 if for a,b,c,x є P;  (a,b,c)\ єθ and (a,x,b) є θ implies (x,b,c) є θ.  
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Definition 3.2 Let P be a generalised lattice and θ ⊆ P3. Then θ is said to have the property of 

transitivity t2 if for a,b,c,x є P; (a,b,c) єθ and (a,x,b) єθ implies (a,x,c) є θ. 

Definition 3.3 Let P be a generalised lattice and a,b,c є P. Then b is said to be gl-between a and c in P 

if ML(mu(ML{a, b} ∪ ML{b, c})) = {b} = mu(ML(mu{a,b} ∪ mu{b,c})), denoted by (a,b,c)glb. 

Note: Let P be a generalised lattice. Then glb = {(a,b,c) є P3| (a,b,c)glb} = \{(a,b,c) є P3| 

ML(mu(ML{a, b} ∪ ML{b, c})) = {b} = mu(ML(mu{a,b} ∪ mu{b,c})) is a 3-relation on P. 

Theorem 3.4 Let P be a generalised lattice. Then the 3-relation glb on P has transitivity t1. 

Proof: Let a,b,c,x є P and suppose (a,b,c), (a,x,b) є glb. Then ML(mu(ML{a, b} ∪ ML{b, c})) = {b} = 

mu(ML(mu{a,b} ∪ mu{b,c})) and ML(mu{a, x} ∪ mu{x, b}) = {x} = mu(ML(mu{a,x} ∪ mu{x,b})). 

Consider L(x)∧ (L(a)∧ L(b)) = (L(a) ∨ L(x))∧ (L(x)∨ L(b)) ∧ (L(a) ∧ L(b)) = L(a) ∧ L(b). To show 

that (x,b,c) є glb: To show that ML(mu(ML{x,b} ∪ ML{b,c})) = {b}: Consider L(mu(ML{x,b} ∪ 

ML{b,c})) = (L(x) ∧ L(b)) ∨ (L(b) ∧ L(c)) = (L(x) ∧ ((L(a) ∧ L(b)) ∨ (L(b) ∧ L(c))) ∨ (L(b) ∧ L(c)) ≥ 

(L(x) ∧ L(a) ∧ L(b)) ∨ (L(x) ∧ L(b) ∧ L(c)) ∨ (L(b) ∧ L(c)) = (L(a) ∧ L(b)) ∨ (L(b) ∧ L(c)) = L(b). 

Again consider L(mu(ML{x,b} ∪ ML{b,c})) = (L(x) ∧ L(b)) ∨ (L(b) ∧ L(c)) ≤ L(b) ∨ L(b) = L(b). 

Therefore L(mu(ML{x,b} ∪ ML{b,c})) = L(b). Therefore ML(mu(ML{x,b} ∪ ML{b,c})) = {b}. To 

show that ML(mu{x,b}∪ mu{b,c})) = {b}: We know that {b} ⊆ {x, b} and {b} ⊆ {b, c}. This 

implies U({x, b}) ⊆ U({b}) and U({b, c}) ⊆ U({b}). This implies L(b) = L(U({b})) ⊆ L(U({x, b})) 

and L(b) = L(U({b})) ⊆ L(U({b, c})). Then L(b) ⊆ L(U({x, b})) ∩ L(U({b, c})) = L(mu{x,b} ∪ 

mu{b,c})). This implies U(ML(mu{x,b} ∪ mu{b,c}))) ⊆ U(L(b)) = U(b). Consider U(x) ∧ (U(a) ∧ 

U(b)) = (U(a) ∨U(x)) ∧ (U(x) ∨ U(b)) ∧ (U(a) ∧ U(b)) = U(a) ∧ U(b). Consider U(ML(mu{x,b} ∪ 

mu{b,c})) = U({x,b}) ∨ U({b,c}) = (U(x) ∧ U(b)) ∨ (U(b) ∧U(c)) = (U(x) ∧ ((U(a) ∧ U(b)) ∨ (U(b) ∧ 

U(c))) ∨ (U(b) ∧ U(c)) ≥ (U(x) ∧ U(a) ∧ U(b)) ∨ (U(x) ∧ U(b) ∧ U(c)) ∨ (U(b) ∧ U(c)) = (U(a) ∧ 

U(b)) ∨ (U(b) ∧ U(c)) = U(b). Therefore mu(ML(mu{x,b} ∪ mu{b,c})) = {b}. Therefore (x,b,c) є 

glb.□ 

4. GENERALISED LATTICE METRIZED SPACES (GL-METRIZED SPACES) 

Definition 4.1 Let S be a set and P be a generalised lattice having least element 0. If there exists a map 

d: S x S → P such that (i) d(a,b) ≥ 0 and d(a,b) = 0 ⟹ a = b (ii) d(a,b) = d(b,a) (iii) d(a,c) є 

L(mu(d(a,b), d(b,c))), then the ordered pair (S,d) is called a generalised lattice metrized space (gl-

metrized space). We denote d(a,b) by a ⁎ b. 

Definition 4.2 Let S be a gl-metrized space and a, b, c є S. Then one can imagin a triangle in S with 

vertices a, b, c and sides a ⁎ b, b ⁎ c and c ⁎ a, called a P-triangle in S, denoted by ΔP (a, b, c). 

Theorem 4.3 Let S be a gl-metrized space and ΔP (a, b, c) be a P-triangle in S. Let x=a ⁎ b, y=b ⁎ c 

and z=c ⁎ a. Then L(mu{x, y}) = L(mu{y, z}) = L(mu{z, x}). 

Proof: Clearly x, y, z є P. Since P is a generalised lattice, by Murty [6] we have L(P) is a lattice. Since 

S is a gl-metrized space by definition 4.1, we have z = c ⁎ a = a ⁎ c єL(mu{a ⁎ b, b ⁎ c}) = L(mu{x, 

y}). This implies L(z)⊆ L(x)∨ L(y). Similarly we get L(y)⊆L(z)∨ L(x) and L(x)⊆ L(y)∨ L(z). Then 

we have L(x)∨ L(y)⊆ L(y)∨ L(z)⊆ L(x)∨ L(y). This means L(x)∨ L(y) = L(y)∨ L(z). Similarly we get 

L(y)∨ L(z) = L(z)∨ L(x) and L(z)∨ L(x) = L(x)∨ L(y). Then L(x)∨ L(y) = L(y) ∨ L(z) = L(z) ∨ L(x). 

Therefore L(mu{x, y}) = L(mu{y, z}) = L(mu{z, x}).□ 

Definition 4.4 Let S be a gl-metrized space and a, b, c є S. Then b is said to be metrically between a 

and c if L(mu{a ⁎ b, b ⁎ c}) = L(a ⁎ c). 

Definition 4.5 Let S be a gl-metrized space and a, b, c є S. If b is said to be metrically between a and c 

then we say that a, b, c are P-linear, denoted by (a, b, c)Pl. 

Note: Let S be a gl-metrized space. Then by definitions 4.4 and 4.5 we have Pl = {(a,b,c) є S x S x S | 

(a, b, c)Pl} = {(a,b,c) є S3| b is said to be metrically between a and c} = {(a,b,c) є S3| L(mu{a ⁎ b, b ⁎ 

c}) = L(a ⁎ c)} is a 3-relation on S. 

Theorem 4.6 Let S be a gl-metrized space and a, b, c є S. Then (a, b, c) є Pl if and only if (c, b, a) є Pl. 

Proof: (a, b, c) є Pl if and only if L(mu{a ⁎ b, b ⁎ c}) = L(a ⁎ c) if and only if L(mu{c ⁎ b, b ⁎ a}) = 

L(c ⁎ a) (by definition 4.1) if and only if (c, b, a) є Pl. □ 
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Definition 4.7 Let S be a gl-metrized space and a, b, c є S. Then the triple of elements (a, b, c) is said 

to satisfy P-line segment property (Pls property) if (a, b, c) є Pl and (a, c, b) є Pl if and only if b= c. 

Theorem 4.8 Let S be a gl-metrized space and a, b, c є S. If a, b, c are vertices of an isosceles triangle 

then (a, b, c) є Pl implies (a, c, b) є Pl. 

Proof: Suppose a, b, c are vertices of an isosceles triangle and say that a ⁎ b = a ⁎ c. Suppose (a, b, c) 

є Pl. Then we have L(mu{a ⁎ b, b ⁎ c}) = L(a ⁎c). Since L(P) is a lattice, we get L(a ⁎ b)∨L(b ⁎ c) = 

L(a ⁎ c) = L(a ⁎ b). To show that (a, c, b) є Pl: By definition 4.1 we have a ⁎ b є L(mu{a ⁎ c, c ⁎ b}). 

Since L(P) is a lattice, we get L(a ⁎ b) ⊆ L(a ⁎ c)∨ L(c ⁎ b) = L(a ⁎ c)∨ L(b ⁎ c) = L(a ⁎ b)∨ L(b ⁎ c) 

= L(a ⁎ b). Therefore L(mu{a ⁎ c, c ⁎ b}) = L(a ⁎ c)∨L(c ⁎ b) = L(a ⁎ b). That is (a, c, b) є Pl. □ 

Theorem 4.9 Let S be a gl-metrized space and a, b, c є S. Suppose (a, b, c) є Pl. Then (a, b, c) not 

satisfies P-line segment property (Pls property) if and only if a, b, c are vertices of an isosceles 

triangle. 

Proof: Suppose a, b, c are vertices of an isosceles triangle. That is a≠ b ≠ c. Given that (a, b, c) є Pl. 

Then by theorem 4.8 we get (a, c, b) є Pl. Since b≠ c, by definition 4.7, we can say that (a, b, c) not 

satisfies Pls property. Conversely suppose (a, b, c) not satisfies Pls property. To show that a, b, c are 

vertices of an isosceles triangle: If a = c then a ⁎ b = c ⁎ b = b ⁎ c and therefore ΔP(a,b,c) is an 

isosceles triangle. Suppose a≠ c. Then ΔP(a,b,c) is a P-triangle in S with a≠ c. Case(i): Suppose 

(a,c,b) є Pl. Then we have (a, b, c) є Pl and (a,c,b) є Pl. Now by theorem 4.3 and definition 4.4 we 

have L(a ⁎ c) = L(mu{a ⁎ b, b ⁎ c}) = L(mu{a ⁎ c, c ⁎ b}) = L(a ⁎ b). Therefore a ⁎ c = a ⁎ b.Case(ii): 

Suppose (a,c,b) є S3 - Pl. Then since (a, b, c) not satisfies Pls property, by definition 4.7 we get b=c. 

Therefore a ⁎ c = a ⁎ b. Hence by both the cases we can say that ΔP (a,b,c) is an isosceles triangle. □ 

Theorem 4.10 Let S be a gl-metrized space. Then the 3-relation Pl on S satisfies the property of 

transitivity t2. 

Proof: Let a,b,c,x є S. Suppose (a,b,c) є Pl and (a,x,b) є Pl. To show that (a,x,c) є Pl: By note after 

definition 4.5 we get L(a ⁎ b)∨ L(b ⁎ c) = L(mu{a ⁎ b, b ⁎ c}) = L(a ⁎ c) and L(a ⁎ x)∨ L(x ⁎ b) = 

L(mu{a ⁎ x, x ⁎ b}) = L(a ⁎ b). Then L(a ⁎ x)∨ L(x ⁎ b)∨ L(b ⁎ c) = L(a ⁎ b)∨ L(b ⁎ c) = L(a ⁎ c). By 

definition 4.1 we have x ⁎ c є L(mu({x ⁎ b, b ⁎ c})) and a ⁎ c є L(mu({a ⁎ x, x ⁎ c})). Then L(a ⁎ c)⊆ 

L(a ⁎ x)∨ L(x ⁎ c)⊆ L(a ⁎ x)∨ L(x ⁎ b)∨ L(b ⁎ c) = L(a ⁎ c). That is L(mu{a ⁎ x, x ⁎ c}) = L(a ⁎ x)∨ 

L(x ⁎ c) = L(a ⁎ c). Therefore (a,x,c) є Pl. Therefore Pl satisfies the property of transitivity t2. □ 
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