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1. INTRODUCTION  

Nanofluid is defined as an engineered colloidal suspension of manometer-sized particles 

(nanoparticles) added to a base fluid usually with poor thermal conductivity [1]. The term was first 

conceived by Choi in 1995 of the Argonne National Laboratory in the United States of America [2]. 

The choice of the base fluid and nanoparticles depends on the application for which the nanofliud is 

intended to be used for, however, nanofluid does not occur naturally, but are synthesized in the 

laboratory [3-6]. The effect of the nanofluid to the base fluid is to increase the thermal conductivity 

and enhance the heat transfer ability of the nanofluid by considerable percentage.  

The flow of nanofluid have myriads of practical imporce in many areas of modern science, 

engineering and technology, chemical, biomechanics, and nuclear industries. Buoyed by the 

assumption that most common base fluids have limited heat transfer capabilities, whereas 

nanoparticles such as Oxide Ceramics (𝐴𝑙2𝑂3, 𝐶𝑢𝑂), metal carbides (𝑆𝑖𝐶), nitrides (𝐴𝑙𝑁, 𝑆𝑖𝑁) or 

metals (𝐴𝑙, 𝐶𝑢) have very high thermal conductivity in comparison to the common fluids [7]. 

Pioneering studies on the convective heat transport on nanofluids and its many applications to 

technology was first conducted by Buongiorno [8-9]. The findings in his study showed that the sum of 

base fluid velocity and the relative slip velocity gives the absolute velocity of the nanoparticles. Using 

seven slip mechanism, he established the relative velocity between the nanoparticle and the base fluid 

incorporating inertia, thermophoresis, Brownian diffusion, magnus effect, fluid drainage and gravity 

[10]. It was observed that, in the absence of turbulent effect, only Brownian diffusion and 

thermophoresis remain the key mechanisms in the nanofluids. Similarly, extensive research has been 

done by so many authors on the magnetohydrodynamics heat transfer analysis in nanofluids. Hatami 
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et al. [11] employed the least square method to analyse the two-phase nanofluid condensation flow for 

industrial applications under magnetic field and external gravitational force. The study made 

comparison between the result obtained and that using fourth order Runge-kutta-Fehlberg and the 

error was found to be minimal. The study considered the Nusselt and Sherwood numbers for the 

condensation fluid under the same condition. The Magnetohydrodynamic flow and heat transfer of a 

hybrid nanofluid in a rotating system among two horizontal surfaces in the presence of thermal 

radiation and joule heating has been studied by Chamka et al. [12] using modified Duan-Rach 

approach. It was assumed that the lower and upper plates are stretchable and penetrable. Using self-

similar transformations, the governing equations were transformed into a system of nonlinear ordinary 

differential equations and solved analytically. The study established the correlation between the 

Nusselt numbers for variation in the assorted parameters. [13] used a stochastic-driven approach 

called feed-forward neutral network (FFNN) with back-propagated Levenberg-Marquardt (BLM) 

algorithm to investigate the heat transfer analysis of nanofluid flow in a rotating system with magnetic 

field. The variations in the non-dimensional parameters of rotation, radiation, magnetic field, Schmidt, 

Prandtl, thermophoresis, Brownian motion and viscosity with the velocity, gravitational acceleration, 

temperature, and concentration profiles were examined. The study found that, the design algorithm is 

correct and robust with minimal mean percentage error which agree with established literature using 

LSM and RKFM.  

[14] utilised numerical method to conduct a comparative study of convective heat transfer results 

between single phase and two-phase nanofluids in a circular tube. It was found that average relative 

error between experimental and CFD for a single-phase flow model is 16%, whereas for two-phase 

model, it was fond to be 8%. The comparison of single and two-phase models for nanofluid 

convection at the entrance of a uniformly heated tube has been considered by [15]. The study 

confirmed earlier result in literature by [14] and validate the accuracy of two-phase modelling. 

Mohyud-Din et al. [16] analytically studied the three-dimensional heat and mass transfer flow of 

nanofluid between two parallel plates in a rotating system with magnetic field effect. The study 

reveals that, heat transfer is enhanced by the thermophoresis and Brownian motion parameters but 

have opposite effect to the concentration profile. Also, they reported the temperature boundary layer 

thickness is decreased in the presence of the Coriolis force.  

[17] conducted a numerical study of heat and mass transfer analysis of unsteady MHD nanofluid flow 

through a channel with moving porous walls in the presence of metallic nanoparticles. Two cases of 

thermal conductivity were used in the analysis of the H-C model. They computed and examined the 

effects of permeable Reynold numbers and relaxation/contraction parameter on the velocity, 

temperature, and concentration profiles. Their finding showed, the flow turns close to the wall of the 

boundary layer when the contraction is put together with suction. Conversely, when both relaxation 

and injection parameters are coupled together, the porous walls adjacent the flow decreased. Haider 

[18] has studied the impact of Stefan blowing in the presence of heat radiation, Arrhenius activation 

energy and chemical reaction of the unsteady MHD nanofluid using the optimal homotopy analysis 

technique. Sobamowo et al. [19] have considered an MHD nanofluid squeezing flow analysis method 

under the influence of slip boundary conditions using variation of parameter method (VPM). The 

three-dimensional flow of an Oldrolyd-B nanofluid over a bidirectional stretching sheet using 

combination of differential transformation method (DTM) and Pade approximation has been 

investigated by Gupta. [20]. The turbulent flow of an MHD Couette nanofluid has been examined by 

Mosayebidorcheh using differential transformation method [21-22]. Semi-analytical Akbari-Ganji 

(AGM) has been proposed to analyse heat and mass transfer of nanofliud in the presence of magnetic 

field. [23]. A Wakif-Galerkin weighted residual method (WGWRM) has been implemented to 

investigate the convection of nanofluid in a horizontal layer of finite depth [24]. Hassani [25] 

explored the homotopy analysis method (HAM) to study the analytical solutions for the boundary 

layer flow of a nanofluid. Hosseinzadeh [26] solved the problem of hybrid fluid in a porous octagonal 

medium under the effect of magnetic field and radiation. The effect of magnetic field on stagnation 

flow of hybrid Ti𝑂2-Cu water nanofluid spanning an expanding surface has been investigated by 

Ghadikolaei [27]. Their findings reveal that, the skin friction coefficient decreased with positive 

increase in the magnetic field parameter and an increase in the Prandtl number. Mondal and Pal [28] 

has studied the influence of viscous-Ohmic dissipations and magnetic field on the convection-
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radiative boundary layer flow of nanofluids caused by non-linear stretching/shrinking sheet. The 

finding showed, decrease in magnetic field lead to an increase in the skin friction and volume fraction 

coefficient. Sheikholeslami and Sadoughi [29] used Mesoscopic method for MHD nanofluid flow 

inside a porous cavity considering various shapes of nanoparticles.  

Since the advent of portable computers and availability of symbolic computing software, novel semi-

analytical methods have been developed by academics to find approximate solutions to problems 

where closed form solutions are not easy to come by or whose analytical solution are difficult to 

obtain. Some of these innovative methods includes Differential transformation method (DTM), 

Homotopy analysis method (HAM), Abkari-Ganji method (AGM), Adomian decomposition method 

(ADM), Homotopy perturbation method (HPM), Variational iteration method (VIM), Differential 

Quadrature method (DQM) and Exp-function method. Similarly, hybridization of two or more these 

methods were equally conceived. Examples of some of these hybrid methods are Laplace Adomian 

decomposition method (LADM), Optimal Homotopy asymptotic method (OHAM), Variational 

Homotopy perturbation method (VHPM), Homotopy perturbation transform method (HPTM), 

Optimal variational iteration method (OVIM), Laplace variational iteration method and others [30] 

The primary motivation of this study is to solve the resulting system of nonlinear ordinary differential 

equations for the heat and mass analysis of a two-phase nanofluid flow between two horizontal plates 

with magnetic field in a rotating system using Adomian decomposition method. Successful 

application of this method in solving diverse problems in science, engineering and technology can be 

found in [31-55]. The convergence of the obtained solution for various values of the flow parameters 

is explicitly discussed and validated in comparison with literature using RKFM and FFNN-BLM. The 

rest of the study is organized as follows: Section 1 & 2 presents an exhaustive literature of mass and 

heat transfer of nanofliud under the influence of magnetic between parallel plate and mathematical 

formulation. The basics of the solution technique and mathematical analysis of the problem wherein 

ADM is applied to solve the system of nonlinear ordinary differential equations is given in section 3 

& 4. The discussion of the numerical result by variation in the pertinent parameters entering the 

problem and their correlation with the velocity, gravitational acceleration, temperature and 

concentration in tables and graphs is discussed in section 5, whereas Section 6 gives the conclusion 

stating the major findings of the study. 

2. MATHEMATICAL FORMULATION OF THE PROBLEM 

We consider a two-phase nanofluid flow which is rotating between horizontal plate around the 

𝑦 −axis under the influence of transverse magnetic field of intensity 𝐵 through the plates where the 

fluid rotates with uniform velocity, Ω. Assuming the distance between the horizontal plates is 

constant. Let 𝑢 and 𝑣 be the velocities in the 𝑥 and 𝑦 directions respectively. Hence, motivated by 

[11], the governing boundary layer equations of continuity, momentum, mass, energy, and heat 

transfer are given as  
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3. GOVERNING EQUATIONS 

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0                                                                                                          (1) 

𝜌𝑓 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 2Ω𝜔) = −

𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
) − 𝜎𝐵2𝑢                               (2) 

𝜌𝑓 (𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
)                                                                                             (3) 

𝜌𝑓 (𝑤
𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
− 2Ω𝜔) = 𝜇 (

𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
) − 𝜎𝐵2𝑢                                 (4) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+𝑤

𝜕𝑇

𝜕𝑧
= 𝛼 (

𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
+
𝜕2𝑇

𝜕𝑧2
) +      

(𝜌𝐶𝜌)𝑝

(𝜌𝐶𝜌)𝑓
[𝐷𝐵 {

𝜕𝐶

𝜕𝑥
.
𝜕𝑇

𝜕𝑥
+
𝜕𝐶

𝜕𝑦
.
𝜕𝑇

𝜕𝑦
+
𝜕𝐶

𝜕𝑧
.
𝜕𝑇

𝜕𝑧
} + (

𝐷𝑇

𝑇0
) {(

𝜕𝑇

𝜕𝑥
)
2
+ (

𝜕𝑇

𝜕𝑦
)
2
+ (

𝜕𝑇

𝜕𝑧
)
2
}]                                   (5) 

 𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
+ 𝑤

𝜕𝐶

𝜕𝑧
= 𝐷𝐵 (

𝜕2𝐶

𝜕𝑥2
+
𝜕2𝐶

𝜕𝑦2
+
𝜕2𝐶

𝜕𝑧2
) + (

𝐷𝑇

𝑇0
) (

𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
+
𝜕2𝑇

𝜕𝑧2
)                     (6) 

subject to the prescribed boundary conditions 

𝑢 =  𝑣 = 𝑤 = 0, 𝑇 = 𝑇0, 𝐶 = 𝐶0 at 𝑦 = 𝐿                                           
𝑢 = 𝑎𝑥, 𝑣 = 𝑤 = 0, 𝑇 = 𝑇1, 𝐶 = 𝐶1  at 𝑦 = 0                                                                                 (7)    

where 𝑇 is the temperature, 𝐶 is the concentration, 𝑃 is the pressure, 𝜌𝑓 is the density of the base 

fluid, 𝜇 is the dynamic viscosity, 𝜅 is the thermal conductivity, 𝑐𝜌 is the specific heat capacity of the 

nanofliud and 𝐷𝐵 is the coefficient of the diffusing species. 

Next, to aid in our analysis of the governing equations, we introduce the following parameters. 

𝜂 =
𝑦

𝐿
, 𝑢 = 𝑎𝑥𝑓′(𝜂), 𝑣 = −𝑎𝐿𝑓(𝜂), 𝑤 = 𝑎𝑥𝑔(𝜂), 𝜃(𝜂) =

𝑇−𝑇1

𝑇0−𝑇1
, 𝜙(𝜂) =

𝐶−𝐶1

𝐶0−𝐶1
                  (8) 

Putting Eq. (8) into the governing Eqs. (1-5) and eliminating the pressure gradient, we have the 

resulting nonlinear system as 

𝑓𝑖𝑣 − 𝑅(𝑓′𝑓′′ − 𝑓𝑓′′′) − 2𝐾𝑟𝑔′ −𝑀𝑓′′ = 0                                              (9) 

𝑔′′ − 𝑅(𝑓′𝑔 − 𝑓𝑔′) + 2𝐾𝑟𝑓′ −𝑀𝑔 = 0                                                        (10) 

𝜃′′ + 𝑃𝑟𝑅𝑓𝜃′ + 𝑁𝑏𝜙′𝜃′ +𝑁𝑡𝜃′2 = 0                                                                     (11) 

𝜙′′ + 𝑅𝑆𝑐𝑓𝜙′ +
𝑁𝑡

𝑁𝑏
𝜃′′ = 0                                                                      (12) 

subject to the boundary conditions𝑓(0) = 0, 𝑓′(0) = 1, 𝑔(0) = 0, 𝜃(0) = 𝜙(0) = 1       

   

 𝑓(1) = 0, 𝑓′(1) = 0, 𝑔(1) = 0, 𝜃(1) = 𝜙(1) = 0                                                                     (13) 

where the nondimensional quantities  

𝑅 =
𝑎𝐿

𝜈
 is the viscosity parameter, 𝑃𝑟 =

𝜇

𝜌𝑓𝛼
 is the Prandtl number, 𝑀 =

𝜎𝐵0
2𝐿2

𝜌𝜈
 is the magnetic 

parameter, 𝑆𝑐 =
𝜇

𝜌𝑓𝐷
 is the Schmidt number, 𝐾𝑟 =

Ω𝐿2

𝜈
 is the rotation parameter, 𝑁𝑏 =

(𝜌𝐶)𝑝𝐷𝐵(𝐶𝐿)

(𝜌𝐶)𝑓𝛼
 is 

the Brownian motion parameter, 𝑁𝑡 =
(𝜌𝐶)𝑓𝐷𝑇(𝑇𝐿)

(𝜌𝐶)𝑓𝛼𝑇𝐿
 is the thermophoresis parameter 

4. BASIC IDEA OF ADOMIAN DECOMPOSITION METHOD (ADM) 

To proceed with the analysis, we start by stating the fundamentals of the solution techniques as 

follows: Let’s consider a nonlinear differential equation of the form 
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𝐿(𝑢(𝑥)) + 𝑅(𝑢(𝑥)) + 𝑁(𝑢(𝑥)) = 𝑔(𝑥)                                                                    (14) 

where 𝐿 is the highest order derivative assumed to be invertible, 𝑅 is the linear differential operator 

with order less than that of 𝐿, 𝑁 is a nonlinear term and 𝑔 is the source term 

Rewriting Eq. (14) for 𝐿(𝑢(𝑥)), we obtain 

𝐿(𝑢(𝑥)) = 𝑔(𝑥) − 𝑅(𝑢(𝑥)) − 𝑁(𝑢(𝑥))                                                                                (15) 

Taking the inverse operator, 𝐿−1 on both sides of Eq. (3), we get 

𝑢(𝑥) = 𝐿−1𝑔(𝑥) − 𝐿−1𝑅(𝑢(𝑥)) − 𝐿−1𝑁(𝑢(𝑥)) 

𝑦(𝑥) = 𝜙 − 𝐿−1𝑅(𝑢(𝑥)) − 𝐿−1𝑁(𝑢(𝑥))                                                       (16) 

where 𝜙 is the term arising from the integration of the source term. It is obtained using the following 

sequence depending on the order of the given equation.  

𝜙 =

{
 
 
 
 
 
 

 
 
 
 
 
 𝑢(0)                                                                                                               𝑓𝑜𝑟 𝐿 =

𝑑

𝑑𝑥

𝑢(0) + 𝑥𝑢′(0)                                                                                                𝑓𝑜𝑟 𝐿 =
𝑑2

𝑑𝑥2

𝑢(0) + 𝑥𝑢′(0) +
𝑥2

2!
𝑢′′(0)                                                                           𝑓𝑜𝑟 𝐿 =

𝑑3

𝑑𝑥3

𝑢(0) + 𝑥𝑢′(0) +
𝑥2

2
𝑢′′(0) +

𝑥3

3!
𝑢′′′(0)                                                    𝑓𝑜𝑟 𝐿 =

𝑑4

𝑑𝑥4

⋮                           
⋮                          

𝑢(0) + 𝑥𝑢′(0) +
𝑥2

2!
𝑢′′(0) +

𝑥3

3!
𝑢′′′(0) + ⋯+

𝑥𝑛

𝑛!
𝑢(𝑛)(0)                  𝑓𝑜𝑟 𝐿 =

𝑑𝑛+1

𝑑𝑥𝑛+1

 

By the standard Adomian decomposition method, we write the unknown solution as an infinite 

decomposition series of the form. 

𝑢(𝑥) = ∑ 𝑢𝑛(𝑥)
∞
𝑛=0                                                                   (18) 

Putting Eq. (18) into Eq. (16), we obtain 

∑ 𝑢𝑛(𝑥) = 𝜙 − 𝐿
−1𝑅(∑ 𝑢𝑛(𝑥)

∞
𝑛=0 ) − 𝐿−1𝑁(∑ 𝑢𝑛(𝑥)

∞
𝑛=0 )∞

𝑛=0                                                      (19) 

Matching both sides of Eq. (19), we obtain the zeroth order component given by 

𝑢0 = 𝜙 

Then the recursive relation is given by 

𝑢𝑛+1(𝑥) = −𝐿−1𝑅(𝑢𝑛) − 𝐿
−1𝑁(𝑢𝑛),   𝑛 ≥ 0                                                                            (20) 

The solution of the problem in Eq. (14) is obtain as limit of the decomposing series 

𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛(𝑥) = 𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + ⋯                                                                              (21) 

Similarly, the nonlinear term can be determined by an infinite series of the Adomian polynomials 

given by 

𝑁(𝑢0, 𝑢1, 𝑢2, … , 𝑢𝑛) = ∑ 𝐴𝑛
∞
𝑛=0                                                                                                     (22) 

Then the 𝐴𝑛
′𝑠 are obtained from the relation 

𝐴𝑛 =
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛
[𝑁(∑ 𝜆𝑘𝑢𝑘

∞
𝑘=0 )]

𝜆=0
, 𝑛 = 0,1,2,3                                                              (23) 

Using Eq. (22), the first five Adomian polynomials are given as 

𝐴0 = 𝑁(𝑢0) 
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𝐴1 = 𝑢1𝑁
′(𝑢0) 

𝐴2 = 𝑢2𝑁
′(𝑢0) +

1

2!
𝑢1
2𝑁′′(𝑢0) 

𝐴3 = 𝑢3𝑁
′(𝑢0) + 𝑢1𝑢2𝑁

′′(𝑢0) +
1

3!
𝑢1
3𝑁′′′(𝑢0) 

𝐴4 = 𝑢4𝑁
′(𝑢0) +

1

2
𝑁′′(𝑢0)(2𝑢1𝑢3 + 𝑢2

2) +
1

2
𝑁′′′(𝑢0)𝑢1

2𝑢2 +
1

4!
𝑁(𝑖𝑣)(𝑢0)𝑢1

4 

𝐴5 = 𝑢5𝑁
′(𝑢0) +

1

2
𝑁′′(𝑢0)(2𝑢1𝑢4 + 2𝑢2𝑢3) +

1

3!
𝑁′′′(𝑢0)(3𝑢1

2𝑢3 + 3𝑢1𝑢2
2) +

4

4!
𝑁(𝑖𝑣)(𝑢0)(𝑢1

3𝑢2)

+
1

5!
𝑁(𝑣)(𝑢0)𝑢1

5 

𝐴6 = 𝑢6𝑁
′(𝑢0) +

1

2!
𝑁′′(𝑢0)(2𝑢1𝑢5 + 2𝑢1𝑢4 + 𝑢3

2) +
1

3!
𝑁′′′(𝑢0)(3𝑢1

2𝑢4 + 𝑢2
3 + 6𝑢1𝑢2𝑢3)

+
1

4!
𝑁(𝑖𝑣)(𝑢0)(4𝑢1

3𝑢3 + 6𝑢1
2𝑢2

2) +
5

5!
𝑁(𝑣)(𝑢0)𝑢1

4𝑢2 +
1

6!
𝑁(𝑣𝑖)(𝑢0)𝑢1

6 

5. SOLUTION PROCEDURE VIA ADOMIAN DECOMPOSITION METHOD (ADM) 

Rearranging Eqs. (9-12) gives the equivalent expressions 

𝑓𝑖𝑣(𝜂) = 𝑅(𝑓′𝑓′′ − 𝑓𝑓′′′) + 2𝐾𝑟𝑔′ +𝑀𝑓′′                                                          (24) 

𝑔′′(𝜂) = 𝑅(𝑓′𝑔 − 𝑓𝑔′) − 2𝐾𝑟𝑓′ +𝑀𝑔                                                                    (25) 

𝜃′′(𝜂) = −𝑃𝑟𝑅𝑓𝜃′ − 𝑁𝑏𝜙′𝜃′ −𝑁𝑡𝜃′2                                                                     (26) 

𝜙′′(𝜂) = −𝑅𝑆𝑐𝑓𝜙′ −
𝑁𝑡

𝑁𝑏
𝜃′′                                                                                              (27) 

Writing the Eqs. (24-27) in operator forms gives 

𝐿1(𝑓) = 𝑅(𝑓
′𝑓′′ − 𝑓𝑓′′′) + 2𝐾𝑟𝑔′ +𝑀𝑓′′                                                (28) 

𝐿2(𝑓) = 𝑅(𝑓
′𝑔 − 𝑓𝑔′) − 2𝐾𝑟𝑓′ +𝑀𝑔                                                         (29) 

𝐿3(𝑓) = −𝑃𝑟𝑅𝑓𝜃
′ − 𝑁𝑏𝜙′𝜃′ − 𝑁𝑡𝜃′2                                                         (30) 

𝐿4(𝑓) = −𝑅𝑆𝑐𝑓𝜙
′ −

𝑁𝑡

𝑁𝑏
𝜃′′                                                                                                                             (31) 

where 𝐿1(. ) =
𝑑4

𝑑𝜂4
(. ) and 𝐿2(. ) = 𝐿3(. ) = 𝐿4(. ) =

𝑑2

𝑑𝜂2
(. ) is a fourth order and second order 

differential operators respectively. Suppose the inverse operators of the above, then we have 

𝐿1
−1(. ) = ∫ ∫ ∫ ∫ (. )𝑑𝜂𝑑𝜂𝑑𝜂𝑑𝜂

𝜂

0

𝜂

0

𝜂

0

𝜂

0

 

L2
−1(. ) = L3

−1(. ) = L4
−1(. ) = ∫ ∫ (. )dηdη

η

0

η

0

 

Now applying 𝐿1
−1, 𝐿2

−1, 𝐿3
−1 and 𝐿4

−1 to both sides of Eqs. (28) −(31), we get the expression 

𝑓(𝜂) = 𝑓(0) + 𝜂𝑓′(0) +
𝜂2

2
𝑓′′(0) +

𝜂2

2
𝑓′′(0) + 𝐿1

−1[𝑅(𝑁1(𝑓) − 𝑁2(𝑓)) + 2𝐾𝑟𝑔
′ +𝑀𝑓′′]         (32) 

𝑔(𝜂) = 𝑔(0) + 𝜂𝑔′(0) + 𝐿2
−1[𝑅(𝑁3(𝑓, 𝑔) − 𝑁4(𝑓, 𝑔)) − 2𝐾𝑟𝑓

′ +𝑀𝑔]                                         (33) 

𝜃(𝜂) = 𝜃(0) + 𝜂𝜃′(0) − 𝐿3
−1[𝑃𝑟𝑅(𝑁5(𝑓, 𝜃)) + 𝑁𝑏(𝑁6(𝜙, 𝜃)) + 𝑁𝑡(𝑁7(𝜃)) ]               (34) 

𝜙(𝜂) = 𝜙(0) + 𝜂𝜙′(0) − 𝐿4
−1 [𝑅𝑆𝑐(𝑁8(𝑓, 𝜙)) −

𝑁𝑡

𝑁𝑏
𝜃′′]                                                                 (35) 

Imposing the given boundary conditions at 𝜂 = 0, Eqs. (32) −(35) reduced to the form 

𝑓(𝜂) = 𝜂 +
𝛼1

2
𝜂2 +

𝛼2

3!
𝜂3 + 𝐿1

−1[𝑅(𝑁1(𝑓) − 𝑁2(𝑓)) + 2𝐾𝑟𝑔
′ +𝑀𝑓′′]                              (36)                                      
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𝑔(𝜂) = 𝛼3𝜂 + 𝐿2
−1[𝑅(𝑁3(𝑓, 𝑔) − 𝑁4(𝑓, 𝑔)) − 2𝐾𝑟𝑓

′ +𝑀𝑔]                                                     (37) 

𝜃(𝜂) = 1 + 𝛼4𝜂 − 𝐿3
−1[𝑃𝑟𝑅(𝑁5(𝑓, 𝜃)) + 𝑁𝑏(𝑁6(𝜙, 𝜃)) + 𝑁𝑡(𝑁7(𝜃)) ]                                        (38)                          

𝜙(𝜂) = 1 + 𝛼5𝜂 − 𝐿4
−1 [𝑅𝑆𝑐(𝑁8(𝑓, 𝜙)) −

𝑁𝑡

𝑁𝑏
𝜃′′]                                                                             (39) 

where 𝑓′′(0) = 𝛼1, 𝑓
′′′(0) = 𝛼2, 𝑔

′(0) = 𝛼3, 𝜃
′(0) = 𝛼4, 𝜙

′(0) = 𝛼5 are to be determined later 

using the boundary condition at 𝜂 = 1 and (𝑓), 𝑁2(𝑓), 𝑁3(𝑓, 𝑔), 𝑁4(𝑓, 𝑔), 𝑁5(𝑓, 𝜃), 𝑁6(𝜙, 𝜃), 𝑁7(𝜃) 
and 𝑁8(𝑓, 𝜙) are the nonlinear terms.  

By the Adomian decomposition method, the unknowns 𝑓(𝜂), 𝑔(𝜂), 𝜃(𝜂) and 𝜙(𝜂) are assumed to be 

series of the form. 

𝑓(𝜂) = ∑ 𝑓𝑛(𝜂),
∞
𝑛=0 𝑔(𝜂) = ∑ 𝑔𝑛(𝜂),

∞
𝑛=0 𝜃(𝜂) = ∑ 𝜃𝑛(𝜂),

∞
𝑛=0 𝜙(𝜂) = ∑ 𝜙𝑛(𝜂)

∞
𝑛=0                         (40) 

Similarly, the nonlinear terms are decomposed as series polynomials in the form 

𝑁1(𝑓) = ∑ 𝐴𝑛
∞
𝑛=0 , 𝑁2(𝑓) = ∑ 𝐵𝑛

∞
𝑛=0 , 𝑁3(𝑓, 𝑔) = ∑ 𝐶𝑛, 𝑁4(𝑓, 𝑔) = ∑ 𝐷𝑛

∞
𝑛=0 ,∞

𝑛=0 𝑁5(𝑓, 𝜃) =
∑ 𝐸𝑛 ,
∞
𝑛=0 𝑁6(𝜙, 𝜃) = ∑ 𝐹𝑛,

∞
𝑛=0 𝑁7(𝜃) = ∑ 𝐺𝑛 ,

∞
𝑛=0 𝑁8(𝑓, 𝜙) = ∑ 𝐻𝑛

∞
𝑛=0                                             (41) 

where 𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛, 𝐸𝑛, 𝐹𝑛, 𝐺𝑛 and 𝐻𝑛 are the Adomian polynomials defined as follows 

𝑁1(𝑓) = 𝑓
′𝑓′′, 𝐴0 = 𝑓0

′𝑓0
′′, 𝐴1 = 𝑓0

′𝑓1
′′ + 𝑓1

′𝑓0
′′, 𝐴2 = 𝑓0

′𝑓2
′′ + 𝑓1

′𝑓1
′′ + 𝑓2

′𝑓0
′′ 

𝑁2(𝑓) = 𝑓𝑓
′′′, 𝐵0 = 𝑓0𝑓0

′′′, 𝐵1 = 𝑓0𝑓1
′′′ + 𝑓1𝑓0

′′′, 𝐵2 = 𝑓0𝑓2
′′′ + 𝑓1𝑓1

′′′ + 𝑓2𝑓0
′′′ 

𝑁3(𝑓, 𝑔) = 𝑓
′𝑔, 𝐶0 = 𝑓0

′𝑔0, 𝐶1 = 𝑓0
′𝑔1 + 𝑓1

′𝑔0, 𝐶2 = 𝑓0
′𝑔2 + 𝑓1

′𝑔1 + 𝑓2
′𝑔0 

𝑁4(𝑓, 𝑔) = 𝑓𝑔
′, 𝐷0 = 𝑓0𝑔0

′ , 𝐷1 = 𝑓0𝑔1
′ + 𝑓1𝑔0

′ , 𝐷2 = 𝑓0𝑔2
′ + 𝑓1𝑔1

′ + 𝑓2𝑔0
′  

𝑁5(𝑓, 𝜃) = 𝑓𝜃′, 𝐸0 = 𝑓0𝜃0
′ , 𝐸1 = 𝑓0𝜃1

′ + 𝑓1𝜃0
′ , 𝐸2 = 𝑓0𝜃2

′ + 𝑓1𝜃1
′ + 𝑓2𝜃0

′  
𝑁6(𝜙, 𝜃) = 𝜙′𝜃′, 𝐹0 = 𝜙0

′𝜃0
′ , 𝐹1 = 𝜙0

′𝜃1
′ + 𝜙1

′𝜃0
′ , 𝐹2 = 𝜙0

′𝜃2
′ + 𝜙1

′𝜃1
′ + 𝜙2

′𝜃0
′  

𝑁7(𝜃) = (𝜃
′)2, 𝐺0 = (𝜃0

′)2, 𝐺1 = 2𝜃0
′𝜃1
′ , 𝐺2 = 2𝜃0

′𝜃2
′ + (𝜃1

′)2 
𝑁8(𝑓, 𝜙) = 𝑓𝜙′, 𝐻0 = 𝑓0𝜙0

′ , 𝐻1 = 𝑓0𝜙1
′ + 𝑓1𝜙0

′ , 𝐻2 = 𝑓0𝜙2
′ + 𝑓1𝜙1

′ + 𝑓2𝜙0
′  

Substitution of Eqs. (40) and (41) into Eqs. (35−(38), we have  

∑ 𝑓𝑛(𝜂)
∞
𝑛=0 = 𝜂 +

𝛼1

2!
𝜂2 +

𝛼2

3!
𝜂3 + 𝐿1

−1[𝑅(∑ 𝐴𝑛
∞
𝑛=0 − ∑ 𝐵𝑛

∞
𝑛=0 ) + 2𝐾𝑟 ∑ 𝑔𝑛

′∞
𝑛=0 +𝑀∑ 𝑓𝑛

′′∞
𝑛=0 ]     (42) 

∑ 𝑔𝑛(𝜂)
∞
𝑛=0 = 𝛼3𝜂 + 𝐿2

−1[𝑅(∑ 𝐶𝑛
∞
𝑛=0 − ∑ 𝐷𝑛

∞
𝑛=0 ) − 2𝐾𝑟 ∑ 𝑓𝑛

′∞
𝑛=0 +𝑀(∑ 𝑔𝑛

∞
𝑛=0 )]                        (43) 

∑ 𝜃𝑛(𝜂)
∞
𝑛=0 = 1 + 𝛼4𝜂 − 𝐿3

−1[𝑃𝑟𝑅(∑ 𝐸𝑛
∞
𝑛=0 ) + 𝑁𝑏(∑ 𝐹𝑛

∞
𝑛=0 ) + 𝑁𝑡(∑ 𝐺𝑛

∞
𝑛=0 ) ]                             (44) 

∑ 𝜙𝑛(𝜂)
∞
𝑛=0 = 1 + 𝛼5𝜂 − 𝐿4

−1 [𝑅𝑆𝑐(∑ 𝐻𝑛
∞
𝑛=0 ) −

𝑁𝑡

𝑁𝑏
(∑ 𝜃𝑛

′′∞
𝑛=0 )]                                                      (45)                                          

From the integral Equations (42) − (45), the zeroth order components and the recursive schemes for 

the approximate analytical solution of system (9-12) are given as follows. 

𝑓0(𝜂) = 𝜂 +
𝛼1

2!
𝜂2 +

𝛼2

3!
𝜂3,  𝑔0(𝜂) = 𝛼3𝜂,  𝜃0(𝜂) = 1 + 𝜂𝛼4,  𝜙0(𝜂) = 1 + 𝛼5𝜂                              (46)                                                         

𝑓𝑛+1(𝜂) = ∫ ∫ ∫ ∫ (𝑅(𝐴𝑛 − 𝐵𝑛) + 2𝐾𝑟𝑔𝑛
′ +𝑀𝑓𝑛

′′)𝑑𝜂𝑑𝜂𝑑𝜂𝑑𝜂
𝜂

0

𝜂

0

𝜂

0

𝜂

0
, 𝑛 ≥ 0                                     (47) 

𝑔𝑛+1(𝜂) = ∫ ∫ (𝑅(𝐶𝑛 − 𝐷𝑛) − 2𝐾𝑟𝑓𝑛
′ +𝑀𝑔𝑛)dηdη

η

0

η

0
, 𝑛 ≥ 0                                                         (48) 

𝜃𝑛+1(𝜂) = ∫ ∫ (𝑃𝑟𝑅𝐸𝑛 + 𝑁𝑏𝐹𝑛 + 𝑁𝑡𝐺𝑛)dηdη
η

0

η

0
, 𝑛 ≥ 0                                                                 (49) 

 𝜙𝑛+1(𝜂) = ∫ ∫ (𝑅𝑆𝑐𝐻𝑛 +
𝑁𝑡

𝑁𝑏
𝜃𝑛
′′) dηdη

η

0

η

0
, 𝑛 ≥ 0                                                                           (50)     

The approximate solutions of Eqs. (47)−(50) are obtained using the partial sum as follows 

𝑓(𝜂) = ∑ 𝑓𝑘(𝜂), 𝑔(𝜂) = ∑ 𝑔𝑘(𝜂), 𝜃(𝜂) = ∑ 𝜃𝑘(𝜂),
∞
𝑛=0  ∞

𝑛=0  𝜙(𝜂) = ∑ 𝜙𝑘(𝜂) 
∞
𝑛=0

∞
𝑛=0                      (51)  

𝑓(𝜂) = 𝜂 +
𝛼1
2!
𝜂2 +

𝛼2
3!
𝜂3 +

1

24
(𝑀𝛼1 + 𝑅𝛼1 − 2Kr𝛼3)𝜂

4 +
1

120
(𝑅𝛼1

2 + 2𝛼2)𝜂
5 + 

                             
1

180
𝑅𝛼1𝛼2𝜂

6 +
1

630
𝑅𝛼2

2𝜂7                                                                                     (52) 

𝑔(𝜂) = 𝛼3𝜂 − 2Kr𝜂
2 + (−2Kr𝛼1 +𝑀𝛼3)𝜂

3 + (−2Kr𝛼2 +
𝑅𝛼1𝛼3

2
)𝜂4 +

2

3
𝑅𝛼2𝛼3𝜂

5                      (53) 

𝜃(𝜂) = 1 + 𝛼4𝜂 −
1

6
Pr𝑅𝜂3 −

1

24
Pr𝑅𝛼1𝛼4𝜂

4 −
1

60
Pr𝑅𝛼2𝛼4𝜂

5 + 𝜂2(−
𝛼4Nt

2
−
Nb𝛼4𝛼5

2
)                   (54) 

𝜙(𝜂) = 1 + 𝛼5𝜂 −
𝛼5

6
𝑅Sc𝜂3 −

𝛼5

24
𝑅Sc𝛼1𝜂

4 −
𝛼5

60
𝑅Sc𝛼2𝜂

5                                                                (55) 

Using the given boundary conditions at 𝜂 = 1, we obtained the values of the constants 

𝛼1, 𝛼2, 𝛼3, 𝛼4 and 𝛼5. Substituting these constants into Eqs. (52) −(55) gives the complete solution of 

the problem. 
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6. RESULTS AND DISCUSSION 

In this section, we present the numerical results obtained for the non-dimensional velocity, 

gravitational acceleration, temperature, and concentration profiles under the influence of various 

parameters. The parameters that arise in this study are viscosity parameter (𝑅),  rotation parameter 

(𝐾𝑟), magnetic field parameter (𝑀), Brownian motion parameter (𝑁𝑏), thermophoresis parameter 

(𝑁𝑡), Schmidt number (𝑆𝑐), and Prandtl number (Pr ). Using symbolic software, COMSOL 

Multiphysics, the flow parameters, and their effects are analyzed, and the result presented in graph 

and tables. 

Table1. Comparison between ADM result with numerical, LSM and FFNN-BLM methods for     velocity profile 

when 𝐾𝑟 = 10, 𝑅 = 1,𝑀 = 2, 𝑃𝑟 = 0.5, 𝑁𝑏 = 0.1, 𝑁𝑡 = 0.5, 𝑆𝑐 = 1. 

𝜂 𝑓(𝜂) 

RKFM 

[11] 

LSM [11] FFNN-BLM 

[13] 

ADM Error (LSM) Error 

(FFNN-

BLM) 

Error (ADM) 

0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

0.10 0.07656 0.07614 0.07655 0.07613 0.0004 0.00005 0.00003 

0.20 0.11453 0.11438 0.11453 0.11451 0.0001 0.00000 0.00002 

0.30 0.12540 0.12675 0.12540 0.12630 0.0013 0.00000 0.00001 

0.40 0.11850 0.12199 0.11850 0.11850 0.0034 0.00000 0.00000 

0.50 0.10077 0.10622 0.10077 0.100760 0.0054 0.00000 0.00001 

0.60 0.07719 0.08365 0.07718 0.07718 0.0064 0.00005 0.00005 

0.70 0.05145 0.05753 0.05146 0.651440 0.0060 0.00005 0.00001 

0.80 0.02705 0.03126 0.02704 0.02704 0.0042 0.00005 0.00000 

0.90 0.00799 0.00957 0.00799 0.00798 0.0015 0.00000 0.00000 

1.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Table2. Comparison between ADM result with numerical, LSM and FFNN-BLM methods for gravitational 

acceleration profile when  𝐾𝑟 = 10, 𝑅 = 1,𝑀 = 2, 𝑃𝑟 = 0.5, 𝑁𝑏 = 0.1, 𝑁𝑡 = 0.5, 𝑆𝑐 = 1 

𝜂 𝑔(𝜂) 

RKFM 

[11] 

LSM [11] FFNN-BLM 

[13] 

ADM Error 

(LSM) 

Error (FFNN-

BLM) 

Error 

(ADM) 

0.00 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 

0.10 0.06315 -0.117922 0.06315 0.06313 0.181072 0.00000 0.00002 

0.20 0.01530 -0.253173 0.01530 0.01529 0.268473 0.00000 0.00001 

0.30 -0.07849 -0.381786 -0.07849 -0.07845 0.303296 0.00000 0.00001 

0.40 -0.17525 -0.484581 -0.17525 -0.17525 0.309331 0.00000 0.00000 

0.50 -0.24860 -0.546816 -0.24860 -0.24861 0.298216 0.00000 0.00001 

0.60 -0.28374 -0.557834 -0.28374 -0.28375 0.274094 0.00000 0.00001 

0.70 -0.27380 -0.510716 -0.27380 -0.27382 0.236916 0.00000 0.00002 

0.80 -0.21799 -0.401925 -0.21799 -0.21798 0.183935 0.00000 0.00001 

0.90 -0.12193 -0.230960 -0.22193 -0.12194 0.109030 0.00000 0.00001 

1.00 0.00000 0.000000 0.000000 0.00000 0.000000 0.00000 0.000000 

Table3. Comparison between ADM result with numerical, LSM and FFNN-BLM methods for temperature 

profile when 𝐾𝑟 = 10, 𝑅 = 1,𝑀 = 2, 𝑃𝑟 = 0.5, 𝑁𝑏 = 0.1, 𝑁𝑡 = 0.5, 𝑆𝑐 = 1 

𝜂 𝜃(𝜂) 

RKFM [11] LSM [11] FFNN-BLM 

[13] 

ADM Error (LSM) Error 

(FFNN-

BLM) 

Error (ADM) 

0.00 1.00000 1.00000 0.99969 1.00000 0.00000 0.00031 0.00000 

0.10 0.92309 0.92299 0.92309 0.92308 0.00001 0.00000 0.00001 

0.20 0.84168 0.84148 0.84168 0.84167 0.00002 0.00000 0.00001 

0.30 0.75569 0.75537 0.75569 0.75568 0.00032 0.00000 0.00001 

0.40 0.66493 0.66448 0.66494 0.66492 0.00045 0.00000 0.00001 

0.50 0.56913 0.56856 0.56913 0.56912 0.00057 0.00000 0.00001 

0.60 0.46793 0.46730 0.46793 0.46791 0.00063 0.00000 0.00002 
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0.70 0.36090 0.36030 0.36091 0.36089 0.00006 0.00005 0.00001 

0.80 0.24758 0.24711 0.24759 0.24756 0.00047 0.00005 0.00002 

0.90 0.12746 0.12721 0.12746 0.12745 0.00025 0.00000 0.00000 

1.00 0.00000 0.00000 0.00001 0.00000 0.00000 0.00001 0.00000 

Table4. Comparison between ADM result with numerical, LSM and FFNN-BLM methods for concentration 

profile when 𝐾𝑟 = 10, 𝑅 = 1,𝑀 = 2, 𝑃𝑟 = 0.5, 𝑁𝑏 = 0.1, 𝑁𝑡 = 0.5, 𝑆𝑐 = 1 
𝜂 𝜙(𝜂) 

RKFM [11] LSM [11] FFNN-BLM 

[13] 

ADM Error (LSM) Error 

(FFNN-

BLM) 

Error (ADM) 

0.00 1.00000 1.00000 0.99992 0.99989 0.000000 0.000008 0.00011 

0.10 0.77832 0.779201 0.77832 0.77831 -0.000088 0.000000 0.00001 

0.20 0.58066 0.582439 0.58066 0.58064 -0.001779 0.000000 0.00002 

0.30 0.40797 0.410275 0.40797 0.40796 -0.002305 0.000000 0.00001 

0.40 0.26111 0.263553 0.26111 0.26110 -0.002443 0.000000 0.00001 

0.50 0.14105 0.143394 0.14105 0.14104 -0.002344 0.000000 0.00001 

0.60 0.04906 0.051220 0.04906 0.04905 -0.002160 0.000000 0.00001 

0.70 -0.01321 -0.011338 -0.01321 -0.01320 -0.001872 0.000000 0.00001 

0.80 -0.04375 -0.042262 -0.04375 -0.04374 -0.001488 0.000000 0.00001 

0.90 -0.04021 -0.039324 -0.04021 -0.04020 -0.000886 0.000000 0.00001 

1.00 0.00000 0.000000 0.00000 0.00000 0.0000000 0.000000 0.00000 

 

 
Figure1. Variation of the temperature profile for variation in rotation parameter 

 

 

Figure2. Gravitational profile for variation in rotation parameter and constant values of other parameters 
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Figure3. Temperature profile for variation in the radiation parameter when 𝑀 = 2, 𝑃𝑟 = 0.71, 𝑆𝑐 = 0.1, 𝑁𝑡 =
0.1, 𝑁𝑏 = 0.5, 𝐾𝑟 = 10 

 

              
Figure4. Gravitational acceleration profile for variation in the rotation parameter. 

 

        

Figure5. Variation of temperature profiles for increase in rotation parameter. 
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Figure6. Temperature profile for different values of Prandtl number when 𝑀 = 2, 𝑅 = 1, 𝑆𝑐 = 0.1, 𝑁𝑡 =
0.1, 𝑁𝑏 = 0,5, 𝐾𝑟 = 10 

 
Figure7. Velocity profile for variation in magnetic field parameter  

 

 
Figure8. Gravitational acceleration profile for variation in thermophoresis parameter when 𝑀 = 2, 𝑅 =
1, 𝑆𝑐 = 0.1, 𝑁𝑡 = 0.1, 𝑁𝑏 = 0,5, 𝐾𝑟 = 10 



Analytical Solution for Heat and Mass Transfer of two-phase Nanofluid Flow with Magnetic Field in a 

rotating System using Adomian Decomposition Method 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                     Page | 12 

Figure9. Gravitational acceleration profile for variation in the Prandtl number and constant values of 𝑀 =
2, 𝑅 = 1, 𝑆𝑐 = 0.1, 𝑁𝑡 = 0.1, 𝑁𝑏 = 0,5, 𝐾𝑟 = 10 

    

Figure10. Temperature profile for variation in the thermophoresis Parameter 𝑀 = 2, 𝑅 = 1, 𝑆𝑐 = 0.1, 𝑃𝑟 =
0.71, 𝑁𝑏 = 0.5, 𝐾𝑟 = 10 

7. CONCLUSION 

In this paper, we examined the magnetohydrodynamic heat transfer analysis of a two-phase nanofliud 

flow between horizontal plates under the influence of magnetic field in a rotating system using semi-

analytical technique. The system of ordinary differential equations is solved analytically using 

Adomian decomposition method (ADM). Parametric study was carried out to ascertain the influence 

of the pertinent flow parameters on the flow velocity (𝑓(𝜂)), gravitational acceleration, 

(𝑔(𝜂), temperature, (𝜃(𝜂)) and concentration, (𝜙(𝜂)). From our analysis, we draw the following 

conclusions for the study as follows. 

i the velocity profile increased with increase in the viscosity and rotation parameters. 

ii the influence of the magnetic field parameters is to decrease the velocity profile of the flow as 

it produces the Lorentz force 

iii the temperature profile and viscosity parameter vary proportionally. 

iv the impact of the thermophoresis parameter is to decrease the temperature profile. 
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v the velocity boundary layer thickness of the flow decreased in the presence of the Prandtl 

number. 

vi Schmidt number and magnetic parameter increases the concentration profile, whereas it is 

decreased in the presence of thermophoresis parameter.  

REFERENCES 

[1] Hafiz, A. 2022, Advances in Nanofluid Heat Transfer. Elsevier Support, USA. 

[2] Choi, S.U, Eastman, J.A. 1995, Enhancing Thermal Conductivity of Fluids with Nanoparticles; Technical 

Report; Argonne National Laboratory: Lemont, IL, USA. 

[3] Sarkar, J. 2011, A critical review on convective heat transfer correlations of nanofluids. Renew. Sustain. 

Energy Rev, 15, 3271–3277.  

[4] Subramanian, K.R.V., Nageswara, T.R., Balakrishna, A. 2021, Nanofluids and their Engineering 

applications, First Edition, CRC Press, USA.  

[5] Sarit, K.D. 2007, Nanofluids Science and Technology, First Edition, Wiley Inter-Science, USA.  

[6]  Buongiorno, J. 2006, Convective transport in nanofluids. Journal of Heat Transfer. 128, 240–250. 

[7] Sohel Murshed, S.M. 2022, Fundamentals and Transport properties of Nanofluids. Royal Society of 

Chemistry Publication, UK. 

[8] Chakraverty, S, Uddhaba, B. 2020, Modelling, and simulation of Nanofluids flow problems. Synthesis 

Lectures of Mechanical Engineering, Springer, USA.  

[9] Bharat, A.B., Divya, B. 2021, Nanofluids for Heat and mass transfer, sustainable manufacturing, and 

application. Elsevier Academic Press, UK.  

[10] Sohel Murshed, S.M. Carlos Nieto, C. 2022, Nanofluids: Synthesis, preparation, and applications. Nova 

Science Publishers Inc, New York, USA.  

[11] Hatami, M., Mosayebidorcheh, S., Jing, D. 2017, Two-phase nanofliud condensation and heat transfer 

modelling using least square method (LSM) for industrial applications. Heat Mass Transfer, Doi: 

10.1007/s00231-016-1964-5. 

[12] Chamkha, J., Dogonchi, A.S., Ganji, D. D. 2019, Magneto-hydrodynamic flow, and heat transfer of a 

hybrid nanofluid in a rotating system among two surfaces in the presence of thermal radiation and Joule heating. 

AIP Advances, 9, 025103; Doi: 10.1063/1.5086247. 

[13] Kamsing, N., Naveed, A.K., Suleiman, M., Sameer, F. A., Ghaylen, L. 2021. Heat Transfer Analysis of 

nanofluid Flowing in a rotating system with Magnetic Field Using an Intelligent Strength Stochastic-Driven 

Approach. Journal of nanomaterials, 12, 2273, Doi: 10. 3390/nano12132273. 

[14] Haghshenas, M., Fard, M., Esfahany, N., Talaie, M. R. 2010, Numerical study of convective heat transfer 

of nanofluids in a circular tube two-phase model versus single-phase model. International Communications in 

Heat Mass Transfer, 37, 91-97. 

[15] Goktepe, S., Atalik, K., Ertirk, H. 2014, Comparison of single and two-phase models for nanofluids 

convection at the entrance of a uniformly heated tube. International Journal of Thermal Science, 80, 83-92. 

[16] Mohyud-Din, S.T., Zaidi, Z.A., Khan, U., Ahmed, N. 2015, On heat and Mass transfer analysis for the flow 

of a nanofluid between rotating parallel plates. Aerospace Science Technology, 46, 514-522. 

[17] Muhammad, Z, A., Ashraf, M., Farooq, M. I., Kashif, A. 2016, Heat and Mass Transfer analysis of 

unsteady MHD nanofluid flow through a channel with moving porous walls and medium. AIP Advances, 6, 

045222. Doi: 10.1063/1.4945440. 

[18] Sobamowo, M.; Jayesimi, L.; Waheed, M. 2018, Magnetohydrodynamic squeezing flow analysis of 

nanofluid under the effect of slip boundary conditions using variation of parameter method. Karbala 

International Journal of Modern Science, 4, 107–118.  

[19] Haider, S.M.A.; Ali, B.; Wang, Q.; Zhao, C. Stefan, B. 2021, Blowing Impacts on Unsteady MHD Flow of 

Nanofluid over a Stretching Sheet with Electric Field, Thermal Radiation and Activation Energy. Coatings, 11, 

1048. 

[20] Gupta, S.; Gupta, S. 2019, MHD three-dimensional flow of Oldroyd-B nanofluid over a bidirectional 

stretching sheet: DTM-Padé Solution. Nonlinear Engineering, 8, 744–754.  

[21] Mosayebidorcheh, S.; Sheikholeslami, M.; Hatami, M.; Ganji, D. 2016, Analysis of turbulent MHD 

Couette nanofluid flow and heat transfer using hybrid DTM–FDM. Protistology, 26, 95–101. 

[22] Tian, Z.; Tang, Z.; Qi, C.; Chen, L.; Wang, Y. 2022, Natural convection heat transfer characteristics of 

sinusoidal cavities filled with nanofluids. Colloids Surf. Physicochemical. Engineering. Asp, 648, 129309. 



Analytical Solution for Heat and Mass Transfer of two-phase Nanofluid Flow with Magnetic Field in a 

rotating System using Adomian Decomposition Method 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                     Page | 14 

[23] Derakhshan, R., Shojaei, A., Hosseinzadeh, K., Nimafar, M., Ganji, D. 2019, Hydrothermal analysis of 

magneto hydrodynamic nanofluid flow between two parallel by AGM. Case Studies Thermal Engineering, 14, 

100439. 

[24] Wakif, A., Animasaun, I., Sehaqui, R. 2021, A Brief Technical Note on the Onset of Convection in a 

Horizontal Nanofluid Layer of Finite Depth via Wakif-Galerkin Weighted Residuals Technique (WGWRT). In 

Defect and Diffusion Forum; Trans Tech Publication. Stafa-Zurich, Switzerland, Vol 409, pp. 90–94. 

[25] Hassani, M., Tabar, M. M., Nemati, H., Domairry, G., Noori, F. 2011, An analytical solution for boundary 

layer flow of a nanofluid past a stretching sheet. International Journal of Thermal Science. Volume, 50, 2256–

2263. 

[26] Hosseinzadeh, K.., Roghani, S., Mogharrebi, A., Asadi, A.; Ganji, D. 2021, Optimization of hybrid 

nanoparticles with mixture fluid flow in an octagonal porous medium by effect of radiation and magnetic field. 

J. Therm. Anal. Calorim,143,1413–1424.  

[27] Ghadikolaei, S., Yassari, M., Sadeghi, H., Hosseinzadeh, K., Ganji, D. 2017, Investigation on 

thermophysical properties of Tio2–Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD 

stagnation point flow. Powder Technology, 322, 428–438. 

[28] Pal, D., Mandal, G. 2015, Hydromagnetic convective–radiative boundary layer flow of nanofluids induced 

by a non-linear vertical stretching/shrinking sheet with viscous–Ohmic dissipation. Powder Technology, 279, 

61–74. 

[29] Sheikholeslami, M., Sadoughi, M. 2017, Mesoscopic method for MHD nanofluid flow inside a porous 

cavity considering various shapes of nanoparticles. International Journal of Heat and Mass Transfer, 113, 106–

114. 

[30] Ganji, D. D. 2017, Numerical and Analytical Solutions for solving Nonlinear Equations in Heat Transfer. 

Advances in Mechatronics and mechanical Engineering, First Edition, IGI Global, USA. 

[31] Adomian, G. 1990, A review of the decomposition method and some recent results for nonlinear equations. 

Mathematical and Computer Modelling, Vol, 13, pp. 17-43. 

[32] Adomian, G. 1994, Solving Frontier problems of Physics. The Adomian decomposition method, Kluwer, 

Dordrecht. 

[33] Adomian, G. and Roch, R. 1986, On the solution of Nonlinear differential equation with convolution 

product nonlinearities. Journal of Applied Analytical Mathematics, 114, 171-175. 

[34] Al-Jawary, M. A. and Al-Razaq, S. G. 2016, A Semi Analytical Iteration Technique for solving Duffing 

Equations. International Journal of Pure and Applied Mathematics, Vol. 18, pp. 871-885. 

[35] Farshad, E., Hadi, A., Farshad, E, F., and Rohoallah, M. 2013, An Iterative Method for solving Partial 

Differential Equations and solution of Korteweg-Devries Equations for Showing the Capability of the Iterative 

Method. World Applied Programming, Vol. 3, pp. 320-327. 

[36] Ebiwareme, L., Kormane, F.A, Odok, E. O.  2022, Simulation of unsteady MHD flow of incompressible 

fluid between two parallel plates using Laplace-Adomian decomposition method. World Journal of Applied 

Research and Reviews, 14(03), 136-145 

[37] Ebiwareme, L., Da-Wariboko Y.A. 2021, Modified Adomian decomposition method and Pade approximant 

for the Numerical approximation of the deterrence model in society. The International Journal of Engineering 

Science, Volume 16, Issue 7, Series 1, pages 01-12, 2021. 

[38] Ebiwareme, L.  2022, A comparative study between semi-analytical iterative schemes for the reliable 

treatment of coupled nonlinear partial differential equations. International Journal of Innovation Engineering 

and Science Research. Volume 6, Issue 1, January-February 2021 

[39] Ebiwareme, L.  2022, Analytical solution of the dynamics of atmospheric C02 using LADM-Pade 

approximation approach, International Journal of Trend in Scientific Research and Development, Volume 6, 

Issue 2, January-February 2022. 

[40] Ebiwareme, L.  2022, Application of semi-analytical iteration techniques for the numerical solution of 

linear and nonlinear differential equations. International Journal of Mathematics Trends and Technology. 

Volume 67, Issue 2, 146-158, February 2021. 

[41] Ebiwareme, L., Akpodee, R. E., Ndu, R. I.  2022, An application of LADM-Pade approximation for the 

analytical solution of the SIR infectious Disease Model. International Journal of Innovation Engineering and 

Science Research. Volume 6, Issue 2, March-April 2022. 

[42] Ebiwareme, L.  2022, Analytical study of the Hepatitis E Virus Model (HEV) vis Hybrid semi-analytical 

Laplace Transformation Adomian decomposition method. Volume 5, Issue 1, Jan-Feb 2022. 

[43] Bakodah, H.O., Mohamed, A.D. 2012, On discrete Adomian Decomposition method with Chebyshev 

Abscissa for Nonlinear Integral Equations. Advances in Pure Mathematics, 2(5), 310-313 . 



Analytical Solution for Heat and Mass Transfer of two-phase Nanofluid Flow with Magnetic Field in a 

rotating System using Adomian Decomposition Method 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                     Page | 15 

[44] Darania, P., Ebadin, A. 2007, A method for the Numerical Solution of the Integro-differential Equations. 

Applied Mathematics and Computation. 188(1), 657-668. 

[45] Dogan, N. 2012, Solution of the systems of ordinary Differential Equation by Combined Laplace 

Transform-Adomian Decomposition Method. Mathematical and Computational Applications. 17(3), 203-212. 

[46] Holmquist, S. M. 2007, An Examination of the Effectiveness of the Adomian Decomposition Method in 

Fluid Dynamics Application. Doctor of Philosophy, University of Central Florida, Orlando, Florida. 

[47] Khan, M., Hussain, M. 2011, Application of Laplace Decomposition Method on Semi-infinite Domain. 

Numerical Algorithm, 56(2), 211-218. 

[48] Wang, Y. 2009, Adomian Method Applied to Navier-Stokes Equation with 

Fractional Order. Proceedings of the ASME 2009 International Design 

Engineering Technical Conferences & Computers and Information in 

Engineering Conference August 30 - September 2, San Diego, California, USA. 

[49] Hasan, Y. Q. 2012, Modified Adomian decomposition method for second order singular initial value 

problems, Advances in Computational Mathematics, and its applications, 1(2), 201-218. 

[50] Wazwaz, A. M. 2005, Adomian decomposition method for a reliable treatment of the 

Emden- Fowler equation, Applied Mathematics and Computation, Vol. 161, pp 

543-560 

[51] Biazar. J. 2006, Solution of the epidemic model by Adomian decomposition method. Applied Mathematics 

and Computation, Vol. 173, 1101–1106. 

[52] Bulut, H., Erg¨ut, M., Asil, V., Bokor, R. H. 2004, Numerical solution of a viscous incompressible flow 

problem through an orifice by Adomian decomposition method. Applied Mathematics and Computation, Vol. 

153, 733–741. 

[53] Singh N., Kumar M. 2011, Adomian Decomposition Method for Solving Higher 

Order Boundary Value Problems, Mathematical Theory and Modeling, Vol 2, No. 1, 12-24. 

[54] Adomian, G. 1984, Convergent Series solution of Nonlinear equations, Journal of Computational Applied 

Mathematics, 11, 225-230. 

[55] Adomian, G. 1984, On the Convergence region for the Decomposition solutions. Journal of Computational 

Applied Mathematics, 11, 379-380. 

NOMENCLATURE 

𝐴 Ratio of the thermophoresis effect to the Brownian diffusion effect of the nanofliud 

𝐶  Concentration of nanofliud 

𝐶𝑝  Specific heat capacity 

𝑔  acceleration due to gravity 

𝜅  thermal conductivity 

𝐵  magnetic field parameter 

𝜌𝑓  density of the base fluid 

𝐷𝐵  Brownian diffusion coefficient 

𝐷𝑇  thermophoresis diffusion coefficient 

GREEK SYSMBOLS 

Ω  Angular velocity 

𝜂  Similarity variable 

𝜃  Self-similar temperature 

𝜙  Nanoparticle concentration 

𝜇  dynamic viscosity 

𝜌  density 

𝜐  kinematic viscosity 

𝜎  electric conductivity 
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SUBSCRIPTS 

𝑛𝑓  Nanofluid 

𝑓  Nanofluid phase 

𝑠  Solid phase 

𝑚  medium 

0  lower plate 

1  upper plate 
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