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1. INTRODUCTION  

Ieren et al. [1] considered a power transformation approach to define and study a Gompertz 

distribution leading to a new distribution called “Power Gompertz distribution”. The probability 

density function of Power Gompertz distribution is given by 
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The joint density function or likelihood function of (1) is given by 
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The log likelihood function is given by 
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Differentiating (3) with respect to θ and equating to zero, we get the maximum likelihood estimator of 

θ which is given as 
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2. Bayesian Method of Estimation 

The Bayesian inference procedures have been developed generally under squared error loss function 
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The Bayes estimator under the above loss function, say, s


 is the posterior mean, i.e, 

( )S E 


= .                         (6)  

Zellner [2], Basu and Ebrahimi [3] have recognized that the inappropriateness of using symmetric loss 

function. Norstrom [4] introduced precautionary loss function which is given as 
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The Bayes estimator under this loss function is denoted by P


 and is obtained as  
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Calabria and Pulcini [5] points out that a useful asymmetric loss function is the entropy loss 
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Also, the loss function ( )L   has been used in 

Dey et al. [6] and Dey and Liu [7], in the original form having 1p .=  Thus ( )L   can written be as 

( ) ( ) 1eL b log ; b>0. = −  −                          (9) 

The Bayes estimator under entropy loss function is denoted by E


 and is obtained by solving the 

following equation 
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Wasan [8] proposed the K-loss function which is given as 
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Under K-loss function the Bayes estimator of θ is denoted by K


 and is obtained as 
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Al-Bayyati [9] introduced a new loss function which is given as 
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Under Al-Bayyati’s loss function the Bayes estimator of θ is denoted by Al


 and is obtained as 
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Let us consider two prior distributions of θ to obtain the Bayes estimators. 

(i) Quasi-prior: For the situation where we have no prior information about the parameter θ, we may 

use the quasi density as given by 
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where d = 0 leads to a diffuse prior and d = 1, a non-informative prior. 
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(ii) Gamma prior: Generally, the gamma density is used as prior distribution of the parameter θ 

given by 
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3. Posterior Density Under ( )1g   

The posterior density of θ under ( )1g  , on using (2), is given by 
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Theorem 1. On using (17), we have 
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Proof.  By definition, 
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From equation (18), for 1c = , we have 
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From equation (18), for 2c = , we have 
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From equation (18), for 1c = − , we have 

( )
( )

1

1 1
1

a
i

n
x

i

E e
n d



  =

 
= − 

− 
 .                    (21) 

From equation (18), for 1c c= + , we have 
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4. Bayes estimators under ( )1g    

From equation (6), on using (19), the Bayes estimator of θ under squared error loss function is given 

by 
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From equation (8), on using (20), the Bayes estimator of θ under precautionary loss function is 

obtained as 
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From equation (10), on using (21), the Bayes estimator of θ under entropy loss function is given by 
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From equation (12), on using (19) and (21), the Bayes estimator of θ under K-loss function is given by 
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From equation (14), on using (18) and (22), the Bayes estimator of θ under Al-Bayyati’s loss function 

comes out to be 
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5. Posterior density under ( )2g     

Under ( )2g  , the posterior density of θ, using equation (2), is obtained as 
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Theorem 2. On using (28), we have 

( )
( )

( )
( )

1

1
1

a
i

c
n

xc

i

n c
E e

n


 

 

−

=

 + +  
= + − 

 +  
 .                    (29) 

Proof.  By definition, 
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From equation (29), for 1c = , we have 
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From equation (29), for 2c = , we have 
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From equation (29), for 1c = − , we have 
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From equation (29), for 1c c= + , we have 
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6. Bayes estimators under ( )2g    

From equation (6), on using (30), the Bayes estimator of θ under squared error loss function is given 

by 
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From equation (8), on using (31), the Bayes estimator of θ under precautionary loss function is 

obtained as 
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From equation (10), on using (32), the Bayes estimator of θ under entropy loss function is given by 
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From equation (12), on using (30) and (32), the Bayes estimator of θ under K-loss function is given by 
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From equation (14), on using (29) and (33), the Bayes estimator of θ under Al-Bayyati’s loss function 

comes out to be 
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7. CONCLUSION 

In this paper, we have obtained a number of estimators of scale parameter of Power Gompertz 

distribution. In equation (4) we have obtained the maximum likelihood estimator of the parameter. In 

equation (23), (24), (25), (26) and (27) we have obtained the Bayes estimators under different loss 

functions using quasi prior. In equation (34), (35), (36), (37) and (38) we have obtained the Bayes 

estimators under different loss functions using gamma prior. In the above equations, it is clear that the 

Bayes estimators depend upon the parameters of the prior distribution.  
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