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Abstract: The partial functions under disjoint-domain sums and functional composition do not form a 

field, and thus conventional linear algebra is not applicable. However they can be regarded as a so-ring, 

an algebraic structure possessing a natural partial ordering, an  infinitary partial addition  and a binary 

multiplication, subject to a set of axioms. In this paper the notions of prime and semiprime bi-ideals in so-

rings are introduced and obtained some characteristics of prime and semiprime bi-ideals of  so-rings.  

Keywords: Prime bi-ideal, semiprime bi-ideal, p-system, m-system, multiplicatively regular, irreducible 

and strongly irreducible bi-ideals. 
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1. INTRODUCTION 

The study of ),( DDpfn (the set of all partial functions of  a set D  to itself), ),( DDMfn (the set 

of all multi functions of a set D to itself) and ),( DDMset (the set of  all total functions of a set D 

to the set of  all finite multi sets of D ) play an  important role in the theory of computer science, 

and to abstract these structures Manes and Benson[5] introduced the notion of sum ordered partial 

semirings(so-rings). Motivated by the work done in partially-additive semantics by Arbib, Manes 

[3] and in the development of matrix theory of so-rings by Martha E. Streenstrup[6]. G. V. S. 

Acharyulu[1] in 1992 studied conditions under which an arbitrary so-ring becomes a ),( DDpfn , 

),( DDMfn and ),( DDMset . Continuing this study, P. V. Srinivasa Rao[8] in 2011 developed 

the ideal theory for so-rings. In this paper we introduce the notions of prime and semiprime bi-

ideals and observe the characteristics of prime radical interms of semiprime bi-ideals. 
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2. PRELIMINARIES 

In this section we collect important definitions, results and examples which were already proved 

for our use in the next  sections. 

2.1 Definition. [5] A partial  monoid is a pair ),(M  where M  is a non empty set and ∑ is a 

partial addition defined on some, but not necessarily all families ):( Iixi  in M subject to the 

following axioms: 

(1) Unary Sum Axiom: If  ):( Iixi  is a one element family in M  and I = { j }, then 

):( Iixi  is defined and equals jx . 

(2) Partition - Associativity Axiom: If  ):( Iixi  is a family in M  and If  ):( JjI j  is a 

partition of I , then ):( Iixi  is summable if and only if ):( ji Iix  is summable for every j 

in J and ( JjIix ji :):( ) is summable.      We write ):( Iixi = 

):):(( JjIix ji . 

2.2 Definition. [5] The sum ordering ≤ on a partial monoid ),(M  is the binary relation ≤ such 

that x ≤ y if and only if there exists a h in M  such that y = x + h, for x, y M . 

2.3 Definition. [5] A partial semiring is a quadruple )1,,,(R , Where ),(R  is a partial monoid  

with partial addition∑, )1,,(R is a monoid with multiplicative operation „ ‟ and unit „1‟, and the 

additive and  multiplicative structures obey the following distributive laws: 

If ):( Iixi  is defined in R, then for all y in R, ):( Iixy i  and ):( Iiyxi  are 

defined and 
i

i

i i

ii

i

i yxyxxyxy ).(][),(][  

2.4 Definition. [5] A sum-ordered partial semiring (or so-ring for short), is a partial semiring in 

which the sum ordering is a partial ordering. 

2.5 Definition. [1] Let R be so-ring. A subset N of R is said to be an ideal of R if the following are 

satisfied: 

(I1)  if  ):( Iixi is a summable family in R and xi N for every i I then ∑xi N, 

(I2)  if x ≤ y and y N then x N, and  

(I3)  if x N and r R then xr, rx N. 

2.6 Definition. [2] A subset N of a so-ring R is said to be a bi-ideal of R if the following are 

satisfied 

(B1)  if ):( Iixi  is a summable family in R and xi N for every i I then 
i

ix N, 

(B2)  if x ≤ y and y N then x N, and  

(B3)  if x, y N and r R then xry N. 

Note that every ideal is a bi-ideal. The following is an example of a so-ring in which bi-ideal is 

not an ideal. 

2.7 Example. [2] Consider the so-ring =N {0} the set of all natural numbers with „0‟.Take R 

= dcba
dc

ba
,,,/  . Then R is a so-ring with respect to matrix addition and matrix 

multiplication. Now B = x
x

/
00

0
 is a bi-ideal but not an ideal of R. 



M. Srinivasa Reddy et al. 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                Page | 136 

2.8 Example. [2] Consider the so-ring R = {0, u, v, x, y, 1} with ∑ defined on R by  

.,

,,0

otherwiseundefined

jsomeforjixifx
x

ij

i

i
 

And  „ ∙ ‟ defined by the following table: 

∙ 0 u v x y 1 

0 0 0 0 0 0 0 

u 0 u 0 0 0 u 

v 0 0 v 0 0 v 

x 0 0 0 0 0 x 

y 0 0 0 0 0 y 

1 0 u v x y 1 

Then for  bi-ideals {0,x,y}, {0,u,x} of R, {0,x,y}∩{0,u,x}={0,x} whereas {0,x,y}{0,u,x} = {0}. 

2.9 Example. [2]  Consider the so-ring R= }1,,,,,0{ dcba with ∑ on R defined by  

i

ikjkj

ij

i

otherwiseundefined

kjixkjsomeforcxbxorbxaxifd

jsomeforjixifx

x

.,

,,0,,,,,

,,0,

 

And  „∙‟ defined by 

x ∙ y =

.1

,1,

,1,1,0

xify

yifx

yxif

  

Then the bi-ideals of R are {0}, {0, a }, {0, b}, {0, c}, {0, a , b, c, d}, R. Now {0, a } {0, 

b}={0, a , b} is not a bi-ideal of  R, since a  + b = d which is not in {0, a , b}. 

2.10 Definition. [8] A proper ideal P  of so-ring R  is said to be prime if and only if for any 

ideals A,B of  R, PAPAB  or PB . 

2.11 Definition. [8] An element a of a partial semiring R  is said to be multiplicatively regular if 

and only if there exists a Rb  such that aaba . 

2.12 Definition.[8] A partial semiring R is said to be multiplicatively regular  if and only if each 

element of R  is multiplicatively regular. 

3. PRIME BI-IDEALS 

In this section, we define a prime bi-ideal of a so-ring R and characterize the prime radical interms 

of  prime bi-ideals of R. 

3.1 Definition. Let R  be a so-ring and a in R. Then the principal ideal generated by a is  

 

3.2 Definition. A proper bi-ideal of a so-ring R is said to be prime if and only if for any bi-ideals 

A, B of  R, ARB  P implies A  P or B  P. 
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3.3 Example. Consider the so-ring R = [0,1]. Since for any bi-ideals [0, x], [0, y] and [0, z] of  R, 

[0, x]R[0, y] [0, z] implies that [0, x] [0, z] or [0, y] [0, z], every bi-ideal of R is a prime bi-

ideal of R. 

3.4 Theorem. If P  is a proper bi-ideal of a complete so-ring R  then the following are  

equivalent: 

( i ) P is prime, and 

( ii )  

Proof: ( i )  ( ii ): Suppose P  is prime and take P arb/r R .Suppose PP  and take 

A = < a >, B = < b >. Let .ARBx  Then ii

i

i brax  for ai < a >, bi < b >, ri R. For 

any i I, aasaai 1  and bbsbbi 2  where s1, s2 R. 

)()( 21 bbsbraasax i

i

 

)]()()()()()()()[( 2112 bbsraasbraasbbsrabra iii

i

i  

])()()([ 2112 bbsarsabarsabbsrabar iii

i

i

.)()()( 2112 bbsarsabarsabbsrabar i

i

i

ii

i

i

i  

 

Since PP  and P  is a bi-ideal of R , we have x P .  Therefore 

PaAPARB  or B = < b > .P  Hence Pa  or .Pb  

( ii ) ( i ): Suppose P = arb/r R P a P or .Pb  Let BA,  be bi-ideals of R such 

that PARB  and suppose that PA . Then PxAx . For any By , 

PARBRrxry }/{ . Px  or Py . .ByPy Therefore PB . Hence P  

is a prime ideal. 

3.5 Definition. A so-ring R is said to be prime if and only if < 0 > is a prime bi-ideal.

),(),,( DDMfnDDPfn  and ),( DDMset are prime so-rings for any non empty set D . It may be 

noted that the so-ring R considered in the example 2.8 is not a prime so-ring.  

3.6 Lemma.  A so-ring R is prime if and only if 1 0  and for each pair of nonzero elements 

Rba, , there exists r in R such that 0arb . 

3.7 Definition. A non empty subset A of a so-ring R is said to be an m-system if and only if for 

any ,, Aba there exists .AarbRr  

3.8 Example. Consider the so-ring R as in the example 2.8. Then set 0,u,v  is an m-system of 

R. 

3.9 Theorem. A proper bi-ideal P  of a complete so-ring R  is prime if and only if PR \  is an 

m-system. 

Proof: A bi-ideal P  of R  is prime arb/r R P then Pa  or Pb  (Since by the 

theorem 3.4)  Pa  and Pb  then arb/r R P for every 

PRarbRrPRba \,\,  PR \  is an m-system. 

3.10 Theorem. A bi-ideal B of a so-ring R  is prime if and only if for any right ideal M  and  left 

ideal N of R . BMN  implies BM  or .BN  
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Proof: Let B  be a prime bi-ideal of R and BMN . Suppose  .BM  Since 

BMNMRN  and B  is prime, BM  or BN . BN . Conversely suppose that 

BMN  implies BM  or BN  for any right ideal M  of R  and any left ideal N  of R . 

Let QP,  be any two bi-ideals of R  such that BPRQ .  Now PRand RQ  are right and left 

ideals of R . Since ))(( RQPR BPRQ , BPR   or  BRQ . BP  or BQ . 

Hence B is prime. 

3.11 Theorem. A prime bi-ideal of a so- ring R  is a prime one-sided ideal of R . 

Proof: Let B  be a prime bi-ideal of a so-ring R . Since B is a bi- ideal of R , 

BBRBRBBR ))((  where BR  is a right ideal and RB  a left ideal of R . By the theorem 

3.10, we have that BBR  or BRB . Hence B  is a either right or left ideal of R . 

3.12 Definition. Let B  be any bi-ideal of a so-ring R . Then define L(B) and H(B) as  

L(B) x B/Rx B  
 and H(B) y L(B)/yR L(B) .  

Note that if )(BLx  and Rz , then BRxzx  and BRxRRxRzx , )(BL  is a 

left ideal of R  and BBL )( . Also )()( BLBH .  

3.13 Theorem. If B is any bi-ideal of a so-ring R , then )(BH  is the  ( unique ) largest two sided 

ideal of  R  contained in B .  

Proof: Since BBL )(  and )()( BLBH , we have that BBH )( . Now we prove that 

)(BH  is a two sided ideal of R : Let )(BHx  and Rr . Then Bx  and ).(BLx  

BRx  and )(BLxR . BRxrx and hence Brx . Since BRxRrx and 

)(BLxRxr , )(, BLrxxr . Now )(BLxRxrR  
and 

)()()( BLBRLRxRRrx . Hence )(, BHrxxr . Therefore )(BH   is a two sided ideal 

of R contained in B. Now we prove that )(BH is largest: Let S be any ideal of R  such that 

BS , and let u  be an element of S . Then Bu  and BSRu . Hence )(BLS . Also 

)(BLu  and )(BLSuR . )(BHu  and hence )(BHS . Hence the theorem. 

3.14 Theorem. Let B be a prime bi-ideal of a so-ring R . Then )(BH  is a prime ideal of R . 

Proof: Let B  be a prime bi-ideal and let )(BHXY  for any  ideals X  and Y  of R . Then 

.BXY  By the theorem 3.10, BX  or BY . Then by the theorem 3.13, )(BH is the 

largest ideal contained in B . Hence )(BHX  or )(BHY . Hence )(BH  is a prime ideal 

of R . 

3.15 Definition. Let R be a so-ring. Then the prime radical β( R  )of R is the intersection of all 

prime ideals of R.   

3.16 Theorem. Every prime bi-ideal I  of a complete so-ring R contains a minimal prime bi-

ideal. 

Proof: Take C = { P  / P is a prime bi-ideal of  R and IP }. Then I  C and hence (C ),  

is a non empty partial ordered set. Let }/{ iH i  be a descending chain of prime bi-ideals of 

R  contained in I . Then 
i

iHH  is a bi-ideal of R  such that IH .To prove H is prime, 

let a,b R  such that HRrarb }/{  and suppose Ha . Then kHa  for some k . 

Since 
K K

a H , arb/r R H  and KH  is prime, we have KHb . Now ,ki  ik HH  

and hence ikiHb i , . Now ki HHki ,  and hence iHa . Since

iHRrarb }/{ , iH  is prime and ,iHa We have ikiHb i , . iHb i  

and hence 
i

iHHb . Hence H  is a prime bi-ideal of R . Thus H  C and H  is a lower 



Prime and Semiprime Bi-Ideals of So-Rings  

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                Page | 139 

bound of }/{ iH i  in C. Then by Zorn‟s lemma, C  has a minimal element. Hence  the 

theorem. 

3.17 Corollary. The prime radical β( R ) of a so-ring R  is the intersection of all prime bi-ideals 

of R . 

Proof: Clearly { Pi / Pi is a prime ideal of R  }  { Bi / Bi is a prime bi-ideal of R  }. 

  { Pi / Pi is a prime ideal of R }  { Bi / Bi is a prime bi-ideal of R  }. 

 β( R )  { Bi / Bi is a prime bi-ideal of R  }. We have, if Bi is a prime bi-ideal of R  then H 

( Bi ) is a prime ideal of R . Then { H(Bi) / H(Bi) is a prime ideal of R  } { Pi / Pi is a prime 

ideal of R  }. 

β( R )=  { Pi / Pi is a prime ideal of R  }  { H(Bi) / H(Bi) is a prime ideal of R  }  { 

Bi / Bi is a prime bi-ideal of R  }. Hence β( R ) =  { Bi / Bi is a prime bi-ideal of R  }.  

4.  SEMIPRIME BI-IDEALS 

In this section we define semiprime bi-ideal of a so-ring R and characterize the prime radical 

interms of semiprime bi-ideals of R. 

4.1 Definition. A proper bi-ideal I of a so-ring R  is said to be semiprime if and only if for any bi-

ideal H of R , HRH I implies H I. 

4.2 Example. Let ),,(R be the so-ring as in the example 3.3. Then for any Rx , every  ideal 

],0[ x  is semiprime. 

Clearly every prime bi-ideal is semiprime. The following is an example of so-ring R  in which a 

semiprime bi-ideal is not a prime bi-ideal. 

4.3 Example. Let ),,(R be a so-ring as in the example 2.8. For the bi-ideals { 0, u }, { 0, v } 

and {0, yx, }  of  R , { 0, u } R  { 0, v } ={ 0 } },,0{ yx . But { 0, u} },,0{ yx  and                

{ 0, v} },,0{ yx . Hence {0, yx, }  is not prime. However the bi-ideal {0, yx, }  is semiprime. 

4.4Theorem.  If I  is a bi-ideal of a complete so-ring R  then the following are equivalent. 

( i ) I  is semiprime. 

( ii ) }/{ Rrara I  Ia . 

Proof: ( i ) ( ii ): Suppose I  is semiprime and take }/{ RraraP . 

If Ia then clearly IP . Suppose IP  and take aA . Let ARAx . Then 

ii

i

i arax for iRraa ii ,, I.  for any Ii , Rsasaaai , . 

)()( asaarasaax
i

i

)]()()()()()()()[( asarasaarasaasaraara iii

i

i . 

])()()([ aassaraasaraaasraaar iii

i

i . 

aassaraasaraaasraaar
i

i

i

i

i

i

i

i )()()( . Since IP  and I  is a 

bi-ideal, Ix . IARA . IaA  and hence Ia . 
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( ii ) ( i ): Suppose }/{ RraraP IaI . Let A  be a bi-ideal of R such that 

IARA  and Aa . Then }/{ Rrara IARA . Ia  and hence IA . Hence I  

is semiprime. 

4.5 Definition. A non empty subset A of a so-ring R is a p-system if and only if for any 

AaraRrAa , . 

Clearly every m-system is a p-system. The following is an example of a so-ring R  in which a p-

system is not an m-system. 

4.6 Example. Let ),,(R be the so-ring as in the example 2.8. Then the sub set },{ vu  of R  is a 

p-system. But it is not an m-system, since for },{, vuvu  and for any  Rr , },{0 vuurv . 

4.7 Theorem.  A proper bi-ideal I of  a complete so-ring R  is semiprime if and only if IR \  is a 

p-system. 

Proof: A bi-ideal P of R  is semiprime  PRrara }/{  then Pa  (by theorem 4.4) 

Pa  then PRrara }/{  for any PRaraRrPRa \,\  

PR \  is a p-system. 

4.8 Theorem. Let B  be a semiprime bi-ideal of a so- ring R . Then BL2
( or BM 2

) 

implies BL  ( or BM ) for any left ideal L  ( or right ideal M ) of R . 

Proof: Let L be a left ideal of  R such that BL2
. Suppose BL . Then there exists 

BxLx . BLLLRxxRx . Since B  is semiprime, Bx , a contradiction. 

Hence BL . Hence the theorem. 

4.9 Theorem. Let B be a semiprime bi-ideal of a so-ring R . Then )(BH is a semiprime ideal of  

R . 

Proof: Let B  be a semiprime bi-ideal of  R  and suppose )(2 BHX  for any ideal X of R . 

Then BX 2
. By the above theorem, BX . From the theorem 3.13, it follows that  

)(BHX . Hence )(BH  is semiprime ideal of R . 

4.10 Corollary. The prime radical β( R ) of  a so-ring R  is the intersection of all the semiprime 

bi-ideals of R . 

Proof: We have β( R ) =  { Bi / Bi is a prime bi-ideal of R }, we know that every prime bi-ideal 

is semiprime bi-ideal of R .  { Bi / Bi is a prime bi-ideal of R  } {Si / Si is semiprime bi-ideal 

of R }.  { Bi / Bi is a prime bi-ideal of R  }  {Si / Si is a semiprime bi-ideal of R }.  

 β( R )   {Si / Si is a semiprime bi-ideal of R }. If Si is a semiprime bi-ideal of R  then H(Si) 

is a semiprime ideal. {H(Si) / H(Si) is a semiprime ideal of R } {Xi / Xi semiprime ideal of R

}.  β( R ) =  {Xi / Xi semiprime ideal of R }  {H(Si) / H(Si) is a semiprime ideal of R }

{Si / Si is semiprime bi-ideal of R }. Hence β( R ) of  a so-ring R  is the intersection of all 

the semiprime bi-ideals of R . 

4.11 Theorem. A partial semiring R  is multiplicatively regular if and only if every bi-ideal in R  

is semi prime. 

Proof: Let R  be a multiplicatively regular partial semiring and  B be any bi-ideal of R . Suppose 

BxRx  for Rx . Since R  is regular, there exists xrxxRr . But xRxxrx . Hence 

BxRxx  and so B  is semiprime.        Conversely suppose that every bi-

ideal of R is semiprime. Let Rr  and consider rRrB . Then B is a bi-ideal of R . Hence 

rRr is semiprime. Since rRrrRr and rRr  is semiprime, we have rRrr . Rx  such 

that rxrr  .Hence R is a regular partial semiring. 
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4.12 Definition. A bi-ideal I  of  a so-ring R  is said to be irreducible if and only if for any bi-

ideals H  and K  of R , KHI   implies HI  or KI . 

4.13 Definition. A bi-ideal I  of  a so-ring R  is said to be strongly irreducible if and only if for 

any bi-ideals H  and K  of R , IKH   implies IH  or IK . 

In the so-ring ]1,0[R  as in the example 3.3, every bi-ideal ],0[ x  is strongly irreducible. 

Clearly every strongly irreducible bi-ideal is irreducible. The following is an example of a so-ring 

R in which an irreducible bi-ideal is not a strongly irreducible bi-ideal. 

4.14 Example.  Let ),,(R  be the so-ring as in the example 2.9. For the bi-ideals },0{},,0{ ba

and },0{ c  of R , },0{}0{},0{},0{ acb   and },0{},0{},,0{},0{ acab . Hence 

},0{ a  is not strongly irreducible. However the bi-ideal },0{ a is irreducible. 

4.15 Definition. A non empty subset A  of so-ring R  is said to be an i-system if and only if for 

any AbaAba ,, . 

4.16 Example.  Let ),,(R  be the so-ring as in the example 2.8.  Then the subset },0{ u  of  R  

is an i-system where as the subset },{ yx  is not an i-system. Since },0{},,0{ yyxx  

and Ayx  .  

4.17 Theorem. If I  is a bi-ideal of  a complete so-ring R  then the following are equivalent : 

( i ) I  is strongly irreducible, 

( ii ) if Rba, satisfy  Iba   then Ia or Ib , and 

( iii ) IR \  is an i-system.  

Proof: ( i ) ( ii ): Suppose I  is strongly irreducible. Then for any Rba,  such that   

Iba   then Ia or Ib . Hence Ia or Ib . 

( ii ) ( iii ): Suppose Rba,  such that   Iba   imply Ia or Ib . Let 

IRba \, . Then Iba  . )\( IRba  . Hence IR \  is an  i-

system. 

( iii ) ( i ): Suppose IR \  is an i-system. Let KH ,  be bi-ideals of  IKHR   and  

suppose IH  and IK . HxIRyx \,   and Ky . yxz   

and Iz . KHz   and Iz , and hence IKH  , a contradiction. Hence I  is 

strongly irreducible. 

4.18 Theorem.  Let a  be a non zero element of a so-ring R and let I  be a bi-ideal of R not 

containing a . Then there exists an irreducible bi-ideal H of R containing I and not containing a . 

Proof: Let C }&/)({ JaJIRidealBiJ . Clearly I  C. Then by Zorn‟s lemma , C  

has a maximal element. Let it be H  . Now we prove that H is irreducible: Let BA, be the bi-

ideals of H such that BAH   and suppose that AH  and BH . BaAa & , 

and hence HBAa  , a contradiction. Hence H  is irreducible and hence theorem.  

4.19 Theorem. Any proper bi-ideal of a so-ring R  is the intersection of all irreducible bi-ideals 

containing it. 

Proof: Let I be a proper bi-ideal of a so-ring R . I1 . Then by the theorem 4.18,  an 

irreducible bi-ideal J of R containing I and not containing 1. Take 

 JRidealBiJI /)({  is irreducible and JI }. Then II . Suppose II .

IxIx . Again by the theorem 4.18,  an irreducible bi-ideal H containing I  and 
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Hx . Then HI .Since HxIx , , a contradiction. Hence 

JRidealBiJII /)({ is irreducible and JI }.    

5. CONCLUSION 

In this paper, we introduced the notions of prime bi-ideal, m-system, semiprime bi-ideal,             

p-system, irreducible and strongly irreducible bi-ideals for a so-ring R . We characterized the 

prime radical of R, intersection of all prime ideals of R interms of prime bi-ideals and semiprime 

bi-ideals of R. Also we obtained the equivalent conditions to prime, semiprime and strongly 

irreducible bi-ideals of R.  
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