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1. INTRODUCTION 

When our body is attacked by a parasites, bacteria or virus, alarm of an immune system goes off, 

setting off a chain response of cellular action. Macrophages/other innate immune cells, say dendritic 

cells, basophils, neutrophils, organized to help attack entering pathogen. These cells are frequently the 

ones who carry out the tasks, and the intruder is eliminated. As soon as the body requires a more 

sophisticated attack, it will turns into T-cells in the thymus then bone marrow- or bursa-derived cells 

(B-cells).The adaptive immune response's major cellular components are these cells. Further, T- cells 

are involved in cell-mediated immunity, whereas B -cells are responsible of humoral immunity, which 

comprises antibodies. These cells are the immune system's unique ops, or a line of defense that learns 

to recognize specific foreign dangers based on previous contacts and behaviors and attacks them when 

they repeat.  

These cells play a dangerous role in cancer progression and treatment. T-cells are the focus of two 

new immunotherapies: checkpoint inhibitors, which are FDA-approved to treat a variety of cancers, 

and CAR T-cell therapy, is now being investigated in medical trials as a potential treatment for blood 

cancers like lymphoma and leukemia. [1]. 

 

Figure1.Types of Epitopes 

T-cells and B-cells are referred to as lymphocytes in Figure 1. Lymphocytic development is 

influenced by primary and secondary lymphoid organs. The bone marrow and the thymus are the key 

lymphoid tissues in the early development of T- and B-lymphocytes.B-cells compete with viruses and 

Abstract: Antibodies have become vital means for biotechnological as well as many clinical applications 

such as diagnostic test, vaccine based on peptide, disease prevention, antibody production and also 

treatment. Normally, one can bind the molecular target called antigen by identifying a slice of its structure 

namely epitope in an extremely explicit way. This capability to foresee epitopes from antigen sequences is 

very difficult job. Despite great effort, the accuracy of epitope prediction methods has only progressed to a 

limited extent, particularly for those that rely on the antigen sequence. In this direction, proposed study aims 

at review and implement ML solutions for classification of linear and nonlinear B-Cell epitopes. 

Keywords: Machine Learning (ML), Antigen, Epitope, Linear B-Cell, predictive analysis. 

 

 

 

 

 

*Corresponding Author: Adithya D A, Department of Computer Science and Engineering, BMS College 

of Engineering, Bengaluru, India 

 



Predictive Analysis of Linear B-Cell Epitopes in Immune Function using ML Algorithms 

 

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE)         Page 24 

bacteria by producing Y-shaped proteins named "antibodies," which are unique to each pathogen. 

Antibodies also block entering cell's exterior and label it for harm by other immune cells.B-

lymphocytes and cancer have been labelled as having a "hate-love" relation. B-cells, for example, 

prevent tumor growth by production of antibodies that fight oncogenic viruses (cancer cells), such as 

the human papillomavirus (HPV), which is accountable for the majority of anal, cervical, and penile 

growths.Immune-suppressive cytokines are released by regulatory B-cells, which suppress the anti-

swellingreaction. B-cells are also far-off prone than T-cells to develop into a fluidgrowth like 

"Chronic Lymphocytic Leukemia." (CLL) is a type of cancer (B-cell lymphoma) [1]. 

The region of a antigen that is predicted by the immune system, precisely antibodies, T cells, or B 

cells, is known as a antigenic determinant .For example, the epitope is the particular portion of the 

antigen to which an antibody fixes. 

Several copies for predicting linear or conformational B-cell epitopes has been established, but their 

accuracy remains a problem. Several epitope predictions models, including learning-based approaches, 

have also been created. The model's performance, however, is still not optimal. The primary issue with 

learning-based prediction models is the imbalance of classes. Because of its unstructured and 

heterogeneous structure, representing amino acids for machine learning algorithms is difficult. 

There are two types of supervision: monitored and unsupervised. ML-based approaches focus on 

performing data-based predictions and deal with the automatic learning of computers without being 

explicitly programmed. In the subject of bioinformatics, machine learning has a number of applications. 

[19]. These methods allows computer programs to perform complex predictions on very large datasets. 

Immunologists can use B-cell epitope prediction to create diagnostic tests, peptide-based vaccines, 

disease prevention, antibody generation, and treatment. T-cell epitope prediction has failed to match 

the presentation of flexible stretch for B-cell epitope estimation. Thanks to the growing availability of 

validated epitope databases, bioinformatics professionals can use Machine Learning procedures on 

curated statistics to design and code enhanced estimation tools for biological scholars. [2]. 

2. REVIEW OF LITERATURE  

Since the 1980s, when the opening approach was discovered, researchers have been interested in 

Linear B-cell epitope prediction. Identification of the B-cell epitope using an precise estimation-based 

technique can initiate a more efficient and cost-effective serum strategy method. Numerous B-cell 

epitope prediction approaches has been established over the last two eras. One of the study [3], 

reviews the present performance and procedure of selected and broadly utilized linear B-cell epitope 

predictors specifically, BepiPred, ABCpred, BcePred SVMTriP, COBEpro, LBEEP also LBtope. This 

work aims to address the techniques' performance difficulties by building a consensus classifier that 

integrates the distinct predictions of these approaches into a one output. A large unbiased data set was 

utilized to assess the performance of these techniques. While all predictors achieved slightly well than 

arbitrary categorization against the test data set, these techniques fared worse than indicated in the original 

sources. The method was compared with necessary cautions, and this improvement in performance can 

guide investigators in the selection of a predictor while they are doing their investigation. 

One of the most essential phases in developing effective vaccines against viruses is identifying epitopes 

that elicit significant responses from B-cells. Because experimental epitope determination is costly, it 

necessitates more effort and time. As a result, ML techniques for reliable recognition of B-cell epitopes are 

crucial. In recent years, different ML algorithms for predicting B-cell epitopes have been developed [4]. 

Chandra, S. Singh et al [5],the findings reveal that epitopes favour charged plus polar amino acids in 

general. Epitopes are enhanced by a loop as a supplementary structural feature, which makes them more 

flexible and reveals a new perspective on the "antibody–antigen interface." 

In order to advance the precision of linear B-cell epitope expectation built on the accessibility of 

empirically recognised linear B-cell epitopes, ML methods are extensively used [6]. BepiPred [7] 

integrates two amino acid tendency metrics, Parker hydrophilicity and Levitt subordinate construction, 

with an epitope estimation Hidden Markov Model (HMMOn linear epitopes, Bepipred was effective. 

However, as compared to systems that depend on training of amino acid physicochemical assets, there was 

only a minor enhancement in estimate accuracy. 
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ABCPred [8] used an Artificial Neural Network (ANN) to estimate linear B-cell epitopes. A non-

terminated list of 700 B-cell epitopes got from the Bcipep database, as well as 700 non-epitope 

peptides got from the Swiss Prot list and utilized for estimation. On this record, 5-fold cross 

authentication trials were used to calculate both recurrent neural networks and feed-forward. The 

finest enactment, 65.93 percent correctness, achieved by means of a recurrent neural network 

proficient on peptides of length size 16. Input classification frames varying from 10 to 20 amino acids 

were verified with the finest enactment, 65.93 percent correctness, stood achieved utilising a recurrent 

neural network proficient on peptides of length size 16. 

Nearest- neighbour and Decision Trees (DT) methods are the two ML methods, tested by Sollner et.al [9]. 

In this work, they integrated these approaches by feature selection on 1478 characteristics removed after a 

variability of susceptibility scales, neighbourhood conditions also particular prospect outcomes. The 

estimation is 72% after verified with a dataset of 1211 B-cell epitopes and 1211 non epitopes by five-fold 

cross-authentication. 

For computing linear B-cell epitopes, Chen projected the Amino Acid Pair (AAP) propensity measure 

[10]. Bcipep record [11] provided the B-cell epitope data set, which is a group of experimentally 

determined B-cell epitopes. An AAP antigenicity balance was established, which assigns a propensity 

outcome to both dipeptides. AAPs are created by the continuous degradation of protein peptides. Cheng's 

record includes 872 positive epitopes then 872 negative non-epitopes. The AAP antigenicity measure 

method has an accuracy of 71% when only the AAP tendency measure is employed, according to research 

utilising the Support Vector Machine classifier. When the AAP measure is integrated with turns, 

antigenicity, elasticity, hydrophilicity also approachability, the accuracy is 72.5 percent. In this blend 

approach, the applicable SVM restrictions were 2 = 2 and C equal to 32. 

-AAT-fs [12] is a programme developed by L. Wang for estimating rectilinear epitopes based on the 

antigenicity of the Amino Acid Triplet (AAT). Later, an SVM for the grouping was created using the AAT 

measure to generate input trajectories. The SVM is capable of operating a Radial Basis Function kernel on 

homology condensed records by means of fivefold cross validation. AAT-fs technique achieves a 74% 

higher accuracy in presentation than the AAP measure and other remaining B-cell epitope estimating 

techniques. With range kernel, incongruity kernel, local arrangement kernel, and sequence kernel, El-

Manzalawy et al. presented four kernel roles hooked on SVM. Given the best results, BCPred is the name 

of the sequence kernel approach [13]. They mentioned a homology condensed record of 701 linear B-cell 

epitopes mined as of the Bcipep list and 701 non-epitopes mined arbitrarily from SwissProt. BCPred uses a 

novel type of string kernel-builtSVM to determine 12, 14, 16 and 18also 20-mer long epitopes on or after 

an arrangement. By the subsequence kernel, the highest accuracy of 75.8% was achieved. EL-Manzalawy 

also used two alternative strategies to develop stretchable length B-cell epitope estimate models. Kernel 

functions and deals with the stretchable length epitopes straight, are one method. Four kernel functions, as 

well as associated methods, were reused for estimating stretchable length epitopes. Mapping stretchable 

length classifications into stable length feature trajectories is another way. The model established on the 

subsequence kernel dubbed FBCPred [14] produced the finest results among the other techniques. 

Linear B-cell epitopes have a long stretchy length which were identified by W.Zhang and Y.Niu's -

BPairwise [15]. Using the Smith Waterman (SW) method, which turns stretchy length peptides into static-

length feature trajectories, an encrypting arrangement based on couple wise order is created. The SVM was 

then utilized to create estimation models as a sorting device. Using this approach, they were able to attain a 

66% accuracy. 

L. JK. Wee, D.Simarmata's -BayesB [16] is a Bayes Feature Extraction (BFE)-based SVM estimation 

model for linear B-cell epitopes of various lengths. The range of measurement is 12 to 20, with a precision 

of 74.50 percent. The -Linear Epitope Prediction System (LEPS) by H.W.Wang, Y.C.Lin, and H.T.Chang 

is an estimating model [17] based on biological characteristics and SVM. SVM's arithmetical 

characteristics were effectively employed to record epitope and non-epitope sections of 2, 3and 4 deposits 

in dimension. In this approach, AntiJen, HIV, and PC records were recycled and well specificity, accuracy, 

also “Positive Prediction Value” (PPV) were attained in utmost testing instances. For an effective and 

efficient test method, a linear epitope estimation technique with high specificity and PPV is required. T. 

Liu et al. applied a feed forward deep neural network [18] to a significant volume of linear B-cell epitope 

data in the IEDB folder with trial indication and created collaborative estimation models that outperformed 

current representations. 
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Table 1 shows the results of a comparison of recognized linear epitope estimation representations 

using the structures Preferred and ML techniques. Hidden Markov Model (HMM), ANN, and SVM 

are the most often used machine learning algorithms. Physicochemical characteristics, as well as 

antigenicity scales, are commonly used in all of these methods. 

Table1. Comparison of ML methods in epitope estimation. 

Methods Name Features ML Technique applied 

ABCPred 
Hydrophilicity, accessibility, flexibility, turns, polarity and 

antigenicity 

Feed Forward and recurrent 

Neural network 

BCPred 
Hydrophilicity, accessibility, AAP antigenicity scale, flexibility, 

turns and antigenicity 

Subsequence kernel based SVM 

BepiPred Levitt secondary structure and Parker hydrophilicity scale.  HMM 

Cheng et.al 

method 

Hydrophilicity, AAP antigenicity scale, flexibility, turns, 

accessibility and antigenicity. 

Support Vector Machine(SVM) 

LEPS 
Hydropathy, flexibility, turns, antigenicity, polarity, tripeptide 

& tetrapeptide antigenicity, dipeptide and accessibility. 

Radial Basis Kernel based SVM 

AAT-fs Amino acid triplet (AAT) antigenicity scale Radial Basis Kernel based SVM 

BayesB A dipeptide's relative position specific amino acid tendency. 
SVM employing Bayes Feature 

Extraction 

DLBEpitope 

Using a hugevolume of linear B-cell epitope data and trial 

indication from the IEDB database, cooperative deep learning 

increased the performance of linear B-cell epitope prediction. 

Ensemble deep learning/ feed 

forward deep neural network 

3. EXPERIMENTAL METHODS 

In order to conduct the predictive analysis on the approach of linear B-Cell and Non-B-Cell Epitopes is 

proposed. Figure 2 shows the workflow in proposed methodology.Data Acquisition & Loading, Data 

Pre-processing & Exploratory Data Analysis, Tokenisation & building sequences of words and Data 

segmentation to creation of training and test datasets are the main steps in implementing this work. 

 

Figure2. Proposed Methodology 

3.1. Data Acquisition and Loading 

The amino acids data are collected from open source data available [20]. To work with machine 

learning requires two things: data and models. When gathering data one can make sure that there are 

enough features (data elements that can aid in prediction) to properly train the learning model. In 

general, the more data one has, the better the outcome. The data is saved as a CSV file or another 

form of dataset that is supported. Loading the Data set includes the incoming data from the data 

source is merged with the current rows if the DataSet already contains rows. The Load function is 

useful in a variety of situations, all of which revolve around collecting data from a specified data 

source and adding it to the current data container (in this example, a DataSet). Table 2 shows the 

sample data acquired from open source [20]. 
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Table2. Sample data of Linear B – Cell epitopes 

Sl. No. Amino Acids Sequence Type 

1.  YYVDKGHNYCGYPENLLIPK Bcell Epitopes 

2.  YYVPLGTQYTDAPSFSDIPN Bcell Epitopes 

3.  YYYADPEGPLPFPYFERQTI  Bcell Epitopes 

4.  YYYDLSTIDPAEEIELQTIT Bcell Epitopes 

5.  YYTTTDSSSDSQTITNPAYD Bcell Epitopes 

6.  YYQQKPVALINNQFLPYPYY Bcell Epitopes 

7.  YYRENMHRYPNQVYYRPMDE Bcell Epitopes 

8.  YYRMMQTVRRMELKADQLYK Bcell Epitopes 

9.  YYTKNTNNNLTLVPAVVGKP Bcell Epitopes 

10.  YYTTTDSSSDSQTITNPAYD Bcell Epitopes 

In this work, data acquisition includes the loading of the B-cell and non-B-cell epitopes dataset, 

wherein dataset contains all the information of cells which are located in the amino acid that isNon-B 

cell and B cell 

3.2. Data Pre-processing and Exploratory Data Analysis 

In this phase, raw data is converted into a format that is useful and efficient. The processes involved 

in data pre-processing include data cleaning, data transformation, and data reduction.  

 Cleaning the data: Many sections of the data (amino acids) may be irrelevant or missing. In 

order to handle this component, data cleansing is performed. It requires coping with data that 

is missing, noisy, and so on. 

 Data transformation: The Steps taken to order the transformation of data (amino acid) into 

approximate forms by normalization, attribute selection, discretization.  

 Data Reduction: Analysis gets more challenging when working with huge sets of amino acids. 

To get rid of this, this work uses a data compression approach. Its objective is to increase 

storage efficiency while simultaneously decreasing data storage and analysis costs.[21,22,23] 

Exploratory Data Analysis: - Amino acid data analysis is the act of analyzing, cleansing, 

manipulating and modeling the amino acid data in order to identify usable information, draw 

conclusions and aid decision-making. As show in the below figure 3. The output of amino acid dataset 

after analyzing the B cell and Non B-cell, obtained an output of Non B – cell as 20,000 epitope and B 

– cell as 12,500 epitope. 

 

Figure3. Exploratory data Analysis 

3.3. Tokenization and Building the Sequence of Words 

Tokenization is the conversion of a string of characters into a string of tokens (strings with an 

assigned and thus identified meaning). Amino acid dataset represented in the form of A, B, C, D etc. 

are assigned to some specific numbers like 1, 2, 3, …….., so on. The figure 4 shows the frequency 

distribution of each amino acids.  
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Figure4. Frequency distribution of each amino acids 

3.4. Training and Test Datasets 

Decision trees, random forests, logistic regression, and XGBoost are examples of machine learning 

modelsand Naive Bayes are selected for conducting the experiments with initial parameters set to 

default value.The pre-processed data is split into 80:20 training and test ratio and 70:30 training and 

test ratio to find the best training ratio to the given dataset. The model is trained in different split ratio 

and build models are stored in pickle file. So as to find the best fit of the given dataset, the hyper 

parameters are tuned for each machine learning build models.  

4. RESULTS 

This work is implemented in anaconda Jupiter notebook version 6.03 with python version 3.8.3. 

Initially tensor flow is configured and installed to get the utilities from python library. Then keras is 

installed for performing pre-processing operations. Sklearn package is used for loading the machine 

learning algorithms. After training the decision tree, NaiveBayes and logistic regression we found less 

in the accuracy of 63%. The performance is evaluated using metrics such as precision, recall and f1-

score. To enhance the model accuracy, we tried tuning of hyper parameters such as random state, 

n_estimators and min samples split of random forest. The result obtained from random forest in the 

experiments is tabulated in table 3. This work explored XGBoost algorithm hyper parameters such as 

estimator rate, max_depth and gamma values. The obtained result from XGBoost is tabulated in table 

4. The table 5 shows the overall comparative study results obtained. Graphically the results are 

compared and shown in figure 5. 

Table3.  Results obtained from Random Forest 

Random_State N_Estimators Min_Samples_Split Accuracy 
Precision Recall Score(F1) 

0 1 0 1 0 1 

1 100 1 65.4 68.5 92.4 63.4 93.7 65.8 92.9 

33 200 5 64.3 62.9 89. 41.9 94.7 49.8 91.4 

56 300 10 63.0 61.0 88.5 43.2 94.0 50.5 91.2 

85 400 10 65.8 64.5 89.5 46.9 94.4 54.5 91.7 

101 500 15 64.7 65.7 88.2 40.4 95.9 50.4 91.6 

Table4.  Results obtained from XGBoost 

Estimator 

Learning 

Rate 

Max_depth 
Gamma 

value 
Accuracy 

precision recall Score(F1) 

0 1 0 1 0 1 

200,0.075 3 0.0 65.5 65.15 91.4 59.4 93.8 62.5 92.9 

300,0.1 4 0.1 64.2 63.11 89.6 45.9 95.0 54.2 91.9 

400, 0.25 6 0.2 63.25 62.9 88.3 41.4 94.8 50 91.4 

500,0.5 10 0.3 63.4 62.8 88.9 45.8 94.1 53 91.5 

600,0.75 15 0.4 63.5 63.8 88.5 42.4 94.9 50.9 91.5 
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Table5. Accuracy Obtained from build ML models 

Built ML Models Accuracy (%) 

Decision Tree 63.06 

Bernoulli Naive Bayes 63.06 

Logistic Regression 63.06 

XGBoost 64.05 

Random Forest (Proposed)  65.78 

 

Figure5. Accuracy obtained from ML Models 

5. CONCLUSION 

In this predictive analysis study different machine learning models are explored and evaluated for 

linear and nonlinear B-cell epitopes. Feature collection stays significant in epitope estimation. Various 

kinds of hyper parameters are examined systematically to find the best predictive model for the given 

dataset. Performance accuracy differs depend on learning techniques used and features selected. 

Integrating the numerous features applied with some factors that aren't important for epitope 

prediction can be filtered out using all of these methods including Principal Component Analysis. 
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