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1. INTRODUCTION 

The purpose of this paper is to evaluate Flutter as a UI tool for creating mobile applications. A method 

that is used for creating mobile applications is by creating them for a specific platform from the 
beginning. Another method is to write a code base that can be compiled to several types of platforms. 

It is a method called cross-platform and is a popular method because of how flexible and fast a mobile 

application can be created. Choosing between native and cross-platforms is often a question about 

money and the proper way of developing. Flutter is an open-source UI toolkit that uses the language 
Dart [15] that can create mobile applications with a single code base and compile the code into both 

Android and iOS [11]. It was created by Google year 2018 and can according to themselves, create 

applications that inherits the same type of look, feel and performance as if they would have been 
developed as a native mobile application. This paper contains a study where Flutter is compared to 

native applications in different aspects such as performance of the CPU, visuals, code complexity and 

code needed to perform its designated task.  

The study in this paper was done in collaboration with the Company Consider. They are a company 

with multiple ones throughout China and work with consulting in the software engineering field, 

developing products such as web applications, mobile applications and other software. Their 

customers normally choose native applications and often have strong opinions of which technique and 

solution they want from the beginning. By researching Flutter, consider will gain more knowledge of 

Flutter to be able to give a better motivation to if it could be a good candidate for their customers or 

not. To be confident in their recommendations, consider requested to see the performance results from 
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the comparison between native and Flutter. They also requested the look and feel to be compared 

together with the code structure and amount of code that it takes to create a Flutter application. There 

will be a creation of 4 applications with the help of 3 programming languages (Kotlin, Dart and 

Swift). Flutter with Dart as the programming language, will produce two of these applications. The 

other two applications will be made with Kotlin and Android Studio as well as Swift and XCode. 

1.1 Background 

Despite its recent release, Flutter has a lot of talk around it and many praises the tool for how good it 

is even though no one seems to actually use it in action. Even though many praises the tools qualities, 

there are still little knowledge on where it fits in between the native development and the cross-

platform tools. A motive for this paper is to understand if Flutter is a good candidate as a cross-

compiler, how close it comes to competing with native in CPU performance and if it performs better, 

worse or the same as a native application. Where can a developer set the preference whether to use 

Flutter over native [6]? This is going to be measured by a survey, literature study and an experiment 

where the results will be weighted together when creating an opinion about how close Flutter comes 

to competing with native 

This study will develop deeper into how Flutter works as a tool for creating mobile applications. 

Furthermore, the study will answer the research questions to bring value for Consider and for their 

customers. This is for them to be able to choose new alternatives to native applications. By 

researching the performance, it gives Consider an understanding of how or if Flutter [1] can be useful 

to their customers. Studying the look and feel will in addition to performance metrics, give an insight 

of how well Flutter can perform and be presented when discussing alternatives to native applications. 

The structure and amount of code together with the look and feel result, will reveal if Flutter can keep 

up its small code base while maintaining a closeness to the same visuals as a native application as 

well as perform equally or better to a native application. 

2. RELATED WORK 

Related work that has been found for the subject revolving Flutter and comparisons with Native are 

close to none except for an article by Coninck that was based on a published paper which could not be 

found. There are however, many academically papers on performance differences between cross-

compilers. One of these papers [3] discusses the differences between cross-platforms. The papers 

results showed that cross-platforms were better for shorter time and budget. Native were preferred 

when interacting with the phone’s integrated system.                                

[3] writes about a study made on performance for Phone Gap versus native. The result showed that 

the cross-platform applications were slower than native in 7/8 performance tests. However, this 

performance study was specifically targeted on android devices. A paper written by [3], brings up the 

differences in cross-platforms and native by researching the platform, development environment and 

code base. Amatyas conclusion was that native is a good fit for heavier applications but is not always 

the most suitable choice for all applications because of it being cost heavy and more time consuming 

than cross-compilers. 

As seen in earlier mentioned related work papers, many uses React Native or Phone Gap for 

comparing with native. Guerra carried out a comparative study on cross-platform frameworks and 

native. In the study, he measured the execution time amongst other metrics and the results showed 

that Flutter had a significantly faster execution time than the other cross-platforms which were React 

Native and Ionic. This can show to be useful for this paper’s study since the earlier performance 

results are based upon React Native [2], but is not an official publication and the original paper could 

not be found. 

The study will look at the aspects of Flutter and how it performs, structures code and manages looks 

of the application. This involves the CPU usage and the grade of confirmability to native behavior. 

This report will not look at other metrics regarding performance. Run time CPU usage were the metric 

that Consider specified for the study. They regarded the metric as the one that would be the most 

interesting when using and developing a mobile application. Build Process CPU usage was not 

researched because Consider did not mention this as an area that they wanted to explore further. 
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3. FOCUS  

3.1    Research Questions 

• RQ1: How does Flutter differentiate in code size and how complex code is needed in  comparison 

to native built applications? 

   • RQ2: How well does Flutter perform in run time CPU usage compared to native  applications 
on Android and iOS? 

• RQ3: How much does Flutter and android native differentiate in terms of look and feel for  the 

application users? 

3.2    Research questions explained 

RQ1: How does Flutter differentiate in code size and how complex code is needed in comparison to 

native built applications? Code size and code complexity is two things that is important for the 

development of a mobile application. This question will help to understand the development 
differences that there are in code size and complexity. This is done to create an understanding of how 

easy the code base languages are to learn and how much code is needed to obtain the wanted results. 

RQ2: How well does Flutter perform   in run time CPU usage compared to native applications on 
Android and iOS? This question will investigate if Flutter can perform at the same level of CPU 

performance as native applications. CPU performance is currently one of the reasons why native is 

considered a better option to other solutions. 

RQ3: How much   does Flutter and    android native differentiate in terms of look and feel for the 

application users?  The look and feel of an application is the first thing a user experiences when using 

an application. This question will delve deeper into how much difference there is between a Flutter 

and a native application in terms of looks and feel. Since both Flutter [9] and Android is developed by 
Google, it would have been a better option to compare iOS to Flutter [1] [4] [12] [8][14]. Instead, 

Android was chosen because of unpredictable events regarding the iOS technology that was to be 

used. 

4. METHOD 

To find the results for the three research questions and the under-laying support for this paper, three 

different methods were carried out. A literature study was conducted to give an understanding to the 

author and the reader how Flutter works. It contains information on how the three tools and languages 
that was used in the experiment, works in development. The research that was found in the literature 

study acted as a support for methods used in the experiment. 

To answer RQ2, an experiment was used. The experiment included four applications that were made 
in Dart [15] with Flutter, Kotlin with Android [11] Studio and Swift with XCode. Two of them are 

made of the single Flutter and Dart code base. It was carried out to find out how Flutter compares in 

the areas of CPU usage compared to native applications. RQ1 was answered by studying the authors’ 
code review for the development of the experiment applications. It was done after the development to 

ensure that the code bases were complete before examining. Development time was measured by 

taking the time that each of the applications took from that of generating the starting layout to 

compiling and running the final version. Measurements of lines, files, size and application size were 
taken from the finished projects and applications. A survey was created and sent out to answer RQ3. It 

had questions revolving look and feel between the two earlier created android applications. This was 

done to see if the survey takers could notice any difference between them and to see how much 
difference it would make for them as users. 

4.1    Literature Study 

The literature study for this paper was executed to give the reader a better understanding of the cross-
platform and native applications. Studying how Swift/iOS, Kotlin/Android and Dart/Flutter handles 

development and compiling. It contains earlier studies on cross-platform and native comparisons. The 

peer reviewed publications that were used for this paper comes from the databases: Google Scholar, 

Diva, IEEE and BTH    Summon. The following keywords and sentences were used: 

   • Cross-platform vs. native 
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   • Google Flutter 

   • Cross-platform performance 

   • Native 

   • Cross-platform tools 

   • Mobile application performance 

Another search word that was used in the search for material on performance was” Phone Gap 

performance”. By looking at the earlier related work, the majority of studies found on cross platform 

comparisons uses Phone Gap which makes it a relevant search word for finding comparative studies. 
The tools official pages were used for primary information about documentation and code standards. 

Online technology articles were used to find general information on differences between the ways of 

creating applications. Multiple articles were used to ensure a strengthening of the information that 

came from online articles. With Flutter being fairly new, it was hard to find a good amount of 
publications. This is why most of the studies and articles specifically about Flutter are taken from 

non-peer reviewed publications. However, the priority was still put on finding peer reviewed 

publications in the first place. Information on cross-platforms versus native and books about Flutter 
was taken from the earlier 

mentioned databases. Snowball sampling was used on the first scholarly database results that showed 

up from searching with the search words. All of the paper types that was found in the scholarly 
databases were used to conduct the literature study. 

4.2    Experiment 

In this report an experiment was carried out to answer RQ1 and RQ2. This section presents the 

experiment and how it was prepared, its goals and the process itself. It is done to give the reader a 
better understanding of how the experiment was executed and planned. Due to outside influence, the 

method had to be changed significantly from the prior method of this thesis work. In summary, 

promised software that were to be used in the project was not delivered. Therefore, adjustments had to 
be made that changed the method and execution significantly. This will be further analysis in the 

analysis section of the report. Battery consumption is an important metric for mobile applications [11] 

CPU usage. The measurement of battery consumption was not possible due to the measuring tools 

needing a connection through USB cord which made the mobile phones charge automatically while 
performing the tests. Four applications were made with Flutter (which creates two applications), 

Kotlin and Swift [10][13]. The applications were created to look like each other and with code that 

followed according to each documentation. A relatively simple layout was chosen because of the time 
constraint of the project and to be able to handle complex code. The application layout consisted of a 

navigation bar and two-page views” Dashboard” and” Notification”. Dashboard were filled with a 

picture of a salad and had the headline” Spring Salad Recipe” while notification had a simple list of 
labels with the word” Notification”. Each view had an app bar at the top with the view name. 

 

Figure1. Example application layout appearance 
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For this system to be able to represent a real-life system, the UI and flow of the application were 

inspired by applications such as: Tasty application and the Notification history application. 
Navigation bars exist in most of the applications today that has content and is not dependent on the 

amount of items that exist in the bar itself, but the actual function and look of the navigation bar. The 

example application was inspired from the” Tasty” application where the same look of the navigation 
bar exists as well as the recipe part of the example application. A similar list view to the one that is 

used in the example application design, can be found in the” Notification history” application. 

 

Figure2. Notification History application                      Figure3. Tasty application 

4.2.1   Experiment Goal 

The goal with this experiment was to find out the difference between the Flutter and the native 

applications in terms of run time CPU usage. Another area that was studied, was the amount of code 

that each development environment required to create the desired looks and functionality of the 

applications. This was a side-to-side measurement and gave an insight of how the native code bases 
compared to the Flutter code base.  

4.2.2   Execution 

 

Figure4. Graphic representation of the applications and their technology four applications in Flutter, 

kotlin and swift were created and built. Each development environment was setup accordingly to their 

documentation: 

   • Flutter  

   • Android - Android Studio  

   • iOS - XCode  

The CPU usage was measured three times manually per application build and the highest, lowest and 

mean values were written down. Values that were higher than was chosen for the lowest, as the CPU 
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showed 0 when the applications were passive. The tools that were used to measure were: Android 

studio profiler (Android) and XCode instruments (iOS). Because the output from the measurements 
instruments only showed as graphs, sampling was used to determine mean value and ease 

measurement. Standard deviation was then calculated for each set of values. The collected values and 

mean of each test case were gathered in a summarized table. The author created the applications and 
measured development time without prior experience with application development. The first 

prototypes were used for the experiment. Code complexity was measured by the author through the 

code review.                        

Devices that were used for the experiment were one iPhone 7 and one Android Samsung S7. These 

mobiles were chosen to match each other's performance for more precise results and because of easy 

accessibility. Exact device specifications that were used for this experiment can be found in Appendix 

A under” Device specifications”. To create a base that would align to each language’s standards, 
terminal commands and templates were used to generate a code base that contained a navigation and 

two connected views. This was done to follow the documentation as much as possible. Package and 

tools can be found in Appendix A under” Tools and packages”. Default margin was used when 
positioning parts such as images and lists. This means that the recommended margin was used for 

each development environment. The navigation route below was followed manually when measuring 

the CPU usage. It was done to generate a good amount of data of the applications functionality and to 
ensure all the test measurements to follow the same guidelines. 

   1. Start the application 

   2. Wait for Dashboard view to load 

   3. Navigate to Notifications view 

   4. Navigate back to Dashboard view 

   5. Navigate to Notifications view 

   6. Scroll up and down in list 4 times 

   7. Return to the Dashboard view 

4.2.3   Preparation of the Devices for testing  

The devices were prepared by doing the following before the measures: 

   • Fully charging the battery 

   • Activating Flight mode 

   • Clearing the processes by restarting the phone 

   • Restarting the application before each measurement 

4.2.4   Hypothesis 

The hypothesis is that Flutter performs equal to or better than a native based application in this 

particular study. This theory is based upon the earlier study made by Coninck where an experiment 
where Flutter was compared to native android, Xamarin forms, native iOS and react native which 

showed that Flutter had a lower CPU usage. Taking a look at studies made between native and cross-

platforming without specifying Flutter, the result shows that the cross-platforms are to be preferred 

because of their many advantages in development speed and that the difference in performance are 
small. 

4.3 Survey 

To answer RQ3, a survey was created and sent out to people who worked or had been educated in the 

software industry. Two of the applications android native and android flutter were compared without 

the participants knowing which one was android native or android Flutter. The look and feel of the 

application was measured by the survey takers answering questions with a 1 to 5 scale where 1 could 

be “I don’t use a phone” and 5 would then be”I use a phone everyday” together with yes/no questions 

as well as input fields for explanations in which the user had to explain the choices based on the looks, 
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behavior and animations of the applications. This type of answering was chosen because it produces 

easier measured answers than if the answers would have been in free form. 

5.1   Kotlin 

Kotlin is a programming language that is made by Jet brains [10]. It is open source software statically 

typed language. The result when doing so would be a compiling error. Kotlin is fully compatible with 

Java and supported on the Android platform for creating Android applications. 

5.1.1   Kotlin compiling 

According to the documentation, Kotlin compiles into compatible by the code for Java when targeted 

on the JVM [10]. Kotlin is a versatile programming language that aims to be able to function on 

multiple platforms. If targeted to native, Kotlin will go through the LLVM to produce specific code 

for the platform in question. 

5.1.2   Kotlin/Android UI management 

When designing an UI in Android together with Kotlin, the developer is inclined to use the Android 

view group system [10]. The layout and UI elements can either be declared in XML or in code at run 

time. Drag and drop is available for the non-programmable layout creation. Both of these options need 

to have the UI parts connect to the code and will need to be initiated upon creation in the on Create 

method for the class layout. The objects in the layout is referred to as view Groups and views. The 

views are called widgets which are can be a text object or an image. These are encapsulated by the 

view Groups that are the layouts.  

5.2   Swift 

Swift is a programming language created by Apple Inc 2014 [12]. It was made to be able to work on 

multiple of platforms and aims to be a replacement to the C-languages. Swift is managed as a group of 

projects where it is split into: swift compiler, standard library, core libraries, LLDB library, swift 

package manager and XCode playground support. 

5.2.1   Swift compiling 

Swift code is compiled down to machine code with the help of seven level steps in the compiler [13]. 

The parser is ran at the beginning to check if there is any grammatical errors and show warnings. 

After the parser, a semantic analysis is carried out to see if it's safe to compile the code without errors. 

Clang importer then imports clang modules that can be referred from the analyzers. This is followed 

by something called a SIL generation and SIL guaranteed transformations. The first SIL runs another 

analysis on the code to improve optimization. The second SIL do data flow diagnostics to check so 

there are no uninitialized variables and results in a canonical SIL, meaning that it is a SIL that exists 

after the optimization and analyses has been done. There is an additional SIL step that is called the 

SIL Optimizations where extra high-level swift optimizations in additions to the ones before, are 

carried out. At the end there is an LLVM IR Generation which means that SIL is transformed into 

machine level code with the help of LLVM, which are compiler tools. 

5.2.2   XCode UI management 

When developing a UI in XCode, the Interface Builder is used to create story-boards. Scenes are used 

in storyboard to represent what is seen and what is happening on the device screen. Segues connects 

the scenes and holds upholds their relation. Scene objects can be dragged and dropped to create a new 

item to view. These items and controllers can be connected to code manually or with the help of 

XCode assistant that can create or generate code automatically. 

5. RESULTS 

This section displays the results that were discovered through the experiment and literature review. 

Pictures of the final applications are found below. 
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Figure6.  Images of final android native and android Flutter applications 

 

6. FLUTTER DIFFERENTIATE IN CODE SIZE AND HOW COMPLEX CODE IS NEEDED IN COMPARISON 

TO NATIVE BUILT APPLICATIONS 

 Looking at the results as a whole, Flutter wins the majority of most categories in the development 
area. There are however some differences that are interesting to take note of when comparing Flutter 

to native builds 

.  

Figure6.1. Application lines of code and file count 

 

Figure 6.1: Development time of each code base 
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 6.1.1   Code size 

As seen in figure 8, Flutter had the lowest amount of code lines and files that were needed in order to 
create the application. Native iOS had the lowest size of project files and app size but a significantly 

larger amount of code lines than the other builds. The native android had the most amount of files 

created and required lower amount of code lines than the iOS native. 

 6.1.2   Code Complexity 

A part of answering Q3 is comparing the code complexity of the development code of each of the 

applications. The part of the application that was chosen for this was the creating of the notification 
list. It was chosen in particular because it contained the most code that was written and because the 

other view only featured an image and a title. The code that is shown in this section is only a part of 

the application code bases. 

 

 Figure 6.2: Picture showing notification list that was chosen for the code complexity part 

 

Figure 6.2: Flutter code snippet showing the creation of notification list 

 Figure 6.2 shows how the Flutter code creates the visual layout and functional code in the same code. 

In the code image, there is a child parent relationship for the widget elements. The code shows that 

there is a widget that is built to return nested widgets. The child to the main containers padding, 
shows the creation of a List View Flutter widget. This view returns a List  
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View with 20 items and 20 container items.  

 
Figure 6.3: Android native code snippet showing the creation of notification list 

 In figure 12, the android Kotlin application code declares the view model and import necessary items 

for the code. Everything happens in the on Create View faction, which in flates the XML layout for 
the notification list and creates an array with the same strings ”Notification” that it injects as data to 

the already existing List View XML target with the id ”products”.                                  

The android native code has a lot of environment specific variables that a developer has to take in for 

consideration. 

 
Figure 6.4: Image of iOS code 

 As shown in figure 6.4, the iOS swift fetches the table from the corresponding story file and creates 

an array within, which it registers a table cell(item) with the name” Plain Cell”. The Table View 
function checks the number of items in the created array” items” and returns a cell to the Table View 

with the text from the array. All this happens in the class for the specific controller in which the 

notification view exists. This code is relatively short for its purpose and it is easily structured for a 
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beginner in mobile development. There are language specific parts of the code but otherwise it could 

probably be understood by someone who have knowledge in other languages. 

7. CONCLUSION 

Flutter is a useful toolkit that enables easy ways of creating new applications. It has gotten more and 
more popular recently and is talked about in the application development industry as a possible 

replacement of React Native and how it can be compared with native applications. The experiment of 

this report revealed that there is a small difference between the CPU performance of Flutter iOS and 
native Swift iOS respective Flutter android and flutter native. There seem to be a difference between 

the performance of iOS and android but when it comes to how well Flutter can perform in CPU usage 

compared to native applications, there is barely a difference. The summery for this is that Flutter can 

perform up to par with a native application for the type of application size that was tested. To verify 
these results and determine that Flutter can keep up with native, further testing needs to be carried out.  
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