
International Journal of Research Studies in Computer Science and Engineering (IJRSCSE)

Volume 5, Issue 4, 2018, PP 24-35

ISSN 2349-4840 (Print) & ISSN 2349-4859 (Online)

DOI: http://dx.doi.org/10.20431/2349-4859.0504004

www.arcjournals.org

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page | 24

Docker and Google Kubernetics

Tapas Chakraborty*

Architect, Tata Consultancy Services

1. ABOUT THE DOMAIN

Microservice is an architectural style that structures an application as a collection of loosely coupled

components services, which implement business capabilities. The micro service architecture enables

the continuous delivery/deployment of large, complex applications. It also enables an organization to

evolve its technology stack and conduct parallel development, which enables faster time to market.

1.1. Why Micro Service?

We have seen problems in monolithic applications which are hard to scale, hard to maintain, new

releases take time which results in lack of agility, lack of innovation and frustrated customer. In

today‘s agile world agility is one of the key components and therefore parallel development is one of

the key aspects. At the same time, the smaller code base is easy to maintain as long as you can

manage multiple code bases and monitor this. Also, customers are paying high prices especially when

the code is running in the cloud without utilizing resources effectively. Micro service is the way to

rescue.

 Micro service is a variant of SOA architectural style that structures an application as a collection of

loosely coupled services.

 Service should be fine-grained

 The protocol should be light weight

1.2. Advantages of Micro-Services

Allow the architecture of individual service to evolve through continuous refactoring and enable

continuous delivery and better agility

 Improves modularity, easier to understand, parallelize development scale independently

 Faster time to market and reduce the frustration of end user

 Decreased Cost – reduce the cost to add more products, customers or business solutions

Comparison of the micro-service framework

 Docker Swarm Kubernetes Mesos

Cluster Installation Very easy to install and

setup

Slightly complex to set

up

Easy to set up for small

cluster but considerably

complex for a large

cluster

Abstract: In today’s world, every customer is thinking of agility, parallel development and reducing cost,

especially infrastructure cost and operational cost. We have seen SOA world where we have written code and

multiple services talk to each other’s for a business use case, but sometimes we end up with one big code base

which is monolithic in nature and maintenance is becoming difficult. We have seen customers are using cloud

and paying for on-demand services without effectively utilizing resources. These problems invite micro-

services. In this paper, I am going to discuss how one should use micro-service in a production environment

and local machine, how to scale, monitor and support Blue-Green deployment.

Keywords: Big Data Analytics, Social Analytics, Storage Analytics, Containers, Cloud computing, Virtual

Machines, Google, Runtime, Data Mitigation, Metadata, Docker

*Corresponding Author: Tapas Chakraborty, Architect, Tata Consultancy Services, USA

Docker and Google Kubernetics

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page | 25

Container Deployment Completely docker

based and very easy to

set up

YAML based on all

components

JSON based

Cluster Configuration At least one server is

running everything. For

production, at least 2

nodes in each layer for

discovery and managers

At least One master and

one minion node. In

production, at least 3

servers in each layer

At least One master and

one slave. In production,

at least 3 master and

several workers

Scalability This is an evolving

point in Swarm

Medium to a large

cluster. Very well

suited for complex

application

Large to Large-scale

clusters.

Maturity Mature but still

evolving

Very mature. Direct

descendent of Google

internal platform.

Very mature (especially

for the large cluster)

With the above comparison, it‘s very clear that Kubernetes and Mesos are matured for an enterprise

solution. Considering the complexity, backed by experienced engineers and suitability in medium

scale applications and increasing popularity, I am going to discuss Kubernetes framework in this

document.

1.3. Networking

Internal network often uses 1 GBPS connections, or faster. Optical fiber connections allow much

higher bandwidth between servers. So the question is how much such responses can be transmitted

over 1 Gbps connection in one second? Let‘s actually do some math. 1 Gbps is 1048576 Kbps. If

average JSON response is 5 KB (which is quite a lot!), you can send 209715 responses per second

through the wire with just one pair of machines. That‘s why network connection is usually not a

bottleneck. Another aspect of micro services is that it‘s scale easily. Imagine two servers, one hosting

the service, another one consuming it. If ever the connection becomes a bottleneck, just add two other

servers, and you can double the performance.

2. DOCKER AND KUBERNETES

Docker is containerization technology. ―Docker containers wrap a piece of software in a complete file

system that contains everything needed to run: code, runtime, system tools, system libraries –

anything that can be installed on a server. This guarantees that the software will always run the same,

regardless of its environment.‖ – Source - https://www.docker.com/what-docker

2.1. How is Docker Different from the Virtual Machine?

The virtual machine runs on top of hypervisor and hypervisor emulates the computer hardware.

The New Way is to deploy containers based on operating-system-level virtualization rather than

hardware virtualization. These containers are isolated from each other and from the host: they have

their own file systems, they can‘t see each other‘s processes, and their computational resource usage

can be bounded. They are easier to build than VMs, and because they are decoupled from the

underlying infrastructure and from the host file system, they are portable across clouds and OS

distributions.

https://www.docker.com/what-docker

Docker and Google Kubernetics

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page | 26

2.2. Summary of Container Benefits

 Agile application creation and deployment: Increased ease and efficiency of container image

creation compared to VM image use.

 Continuous development, integration, and deployment: Provides for reliable and frequent container

image build and deployment with quick and easy rollbacks (due to image immutability).

 Dev and Ops separation of concerns: Create application container images at build/release time

rather than deployment time, thereby decoupling applications from infrastructure.

 Environmental consistency across development, testing, and production: Runs the same on a laptop

as it does in the cloud.

 Cloud and OS distribution portability: Runs on Ubuntu, RHEL, CoreOS, on-prem, Google

Container Engine, and anywhere else.

 Application-centric management: Raises the level of abstraction from running an OS on virtual

hardware to run an application on an OS using logical resources.

 Loosely coupled, distributed, elastic, liberated micro-services: Applications are broken into

smaller, independent pieces and can be deployed and managed dynamically – not a fat monolithic

stack running on one big single-purpose machine.

 Resource isolation: Predictable application performance.

 Resource utilization: High efficiency and density. In today‘s world when the customer is moving

to cloud, effective resource utilization is one key aspect to reduce operational cost. Micro-service

will help the customer to achieve that goal by deploying multiple micro-services into a virtual

machine so that effective resource utilization is much better and it will reduce infra-structure cost

also.

2.3. Google Kubernetes

Nearly all applications nowadays need to have answers for things like

 Replication of components

 Auto-scaling

 Load balancing

 Rolling updates

 Logging across components

 Monitoring and health checking

 Service discovery

 Authentication

Google has given a combined solution for that which is Kubernetes, or how it‘s called in short – K8s.

At a minimum, Kubernetes can schedule and run application containers on clusters of physical or

virtual machines. However, Kubernetes also allows developers to ‗cut the cord‘ to physical and virtual

machines, moving from a host-centric infrastructure to a container-centric infrastructure, which

provides the full advantages and benefits inherent to containers. Kubernetes provides the

infrastructure to build a truly container-centric development environment.

2.4. Moving parts of Kubernetes

PODS

 May contain multiple containers

 The life cycle of these containers bound together

 Containers in the pod can see each other on local host

Pods are not intended to live long. They are created, destroyed and re-created on demand, based on

the state of the server and the service itself.

http://martinfowler.com/articles/microservices.html

Docker and Google Kubernetics

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page | 27

2.5. Service

As pods have a short lifetime, there is no guarantee about the IP address they are served on. This could

make the communication of micro-services hard. Imagine a typical Front-End communication with

Backend services. Hence K8s has introduced the concept of service, which is an abstraction on top of a

number of pods, typically requiring running a proxy on top, for other services to communicate with it via

a Virtual IP address. This is where you can configure load balancing for your numerous pods and

expose them via a service.

3. KUBERNETES COMPONENTS

Kubernetes consists of several parts, some of them optional, some mandatory for the whole system.

 Master Node

 API Server

 Replication Controller

 Scheduler

 ETDC storage

 Controller Manager

 Worker Node

 Docker

 Kubelet

 Kube proxy

 Kubectl

Kubernetes – High-level architecture

Master Node

The master node is responsible for management of Kubernetes cluster. The following components

belong to master node

API Server

API server is the entry points for all REST commands to control the cluster. It processes the rest

requests, validates them, and executes the bound business logic. The resulting state has to be persisted

somewhere, and that brings us to the next component of the master node.

Etcd storage

Etcd is a simple, distributed, consistent key-value store. It‘s mainly used for shared configuration and

service discovery. It provides a REST API for CRUD operations as well as an interface to register

watchers on specific nodes, which enables a reliable way to notify the rest of the cluster about

configuration changes.

Docker and Google Kubernetics

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page | 28

Example of data stored by Kubernetes in etcd is jobs being scheduled, created and deployed

pod/service details and state, namespaces, and replication information, etc.

Scheduler

The deployment of configured pods and services onto the nodes happens thanks to the scheduler

component. The scheduler has the information regarding resources available on the members of the

cluster, as well as the ones required for the configured service to run and hence is able to decide where to

deploy a specific service.

Controller-manager

Optionally you can run different kinds of controllers inside the master node. Controller-manager is a

daemon embedding those. A controller uses API server to watch the shared state of the cluster and

makes corrective changes to the current state to bring it to the desired one. An example of such a

controller is the Replication controller, which takes care of the number of pods in the system. The

replication factor is configured by the user, and that‘s the controller‘s responsibility to recreate a failed

pod or remove an extra-scheduled one. Other examples of controllers are endpoints controller,

namespace controller, and service accounts controller, but we will not dive into details here.

Worker Node

The pods are run here, so the worker node contains all the necessary services to manage the

networking between the containers, communicate with the master node, and assign resources to the

containers scheduled.

Docker

Docker runs on each of the worker nodes and runs the configured pods. It takes care of downloading

the images and starting the containers.

Kubelet

Kubelet gets the configuration of a pod from the API server and ensures that the described containers

are up and running. This is the worker service that‘s responsible for communicating with the master

node. It also communicates with etcd, to get information about services and write the details about

newly created ones.

Kube-proxy

Kube-proxy acts as a network proxy and a load balancer for a service on a single worker node. It takes

care of the network routing for TCP and UDP packets.

Kubectl

And final bit – a command line tool to communicate with API service and send commands to the

master node.

Docker and Google Kubernetics

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page | 29

4. POC RESULTS AND LESSONS LEARNED

4.1. POC using simple docker

Here is the example of docker file which we used in our POC. This file installs JDK1.8 mount the

volume and copy the jar file as app.jar. Start the jar as the application build on using spring boot and

expose one PORT so that one can access the application using the PORT

$. /gradlew build buildDocker -x test //build the docker file. PORT mapping

$docker run -p 8071:8071 -t springio/gs-spring-boot-docker

The above comment deploys the application from the image springio/gs-spring-boot-docker. The

application is running on 8071, and we can map the same port or different PORT to map it from the

source host.

Here is the pictorial view of the mapping of ports. So it creates 3 containers within the same virtual

machine, and each one is running with PORT 8071, and we can access 3 containers of the same

application using 8071, 8072 and 8073. We need this port mapping as one host machine can‘t have

same port.

4.2. POC using Docker and Google Kubernetes

We put one sample code which we developed using Spring boot (Hello world) in public docker hub.

We started Kubernetes cluster using minikube in mac machine.

$minikube start (To start Kubernetes) - Pre-requisite is to install docker in the machine.

$minikube service springdocker --URL (get the end point URI of the application)

Get the pods and services running

Docker and Google Kubernetics

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page | 30

$kubectl get pods // Get the pods

$kubectl get services // Get the services

$kubectl get replicasets // Get replica sets, this is like auto-scaling group

$docker ps // Get all the processes that are running within docker container

Here is the sample screenshot of deployment UI where you can pull the code from docker hub.

4.3. Automatic Deployment

With the Deployer in place, we were able to hook up deployments to a build pipeline.

Our build server can, after a successful build, push a new Docker image to a registry such as Docker

Hub. Then the build server can invoke the Deployer to automatically deploy the new version to a test

environment. The same image can be promoted to production by triggering the Deployer on the

production environment.

4.4. Rolling Update

In today‘s production deployment, almost every customer needs deployment without any downtime.

Kubernetes support Blue Green deployment, and in the below section, I have described how we can

do rolling deployment in Kubernetes.

Change the code and put version 1 and build the code. Here are the steps where we modified the code,

build the code to create an image, tag the image and push it to docker hub. Set the deployment to a

new image.

$. /gradlew build buildDocker -x test //Create docker image

$docker images //list of docker images // Push the image into docker registry$docker tag <image tag>

<image> :< version> //tag it to v1

$docker login

Docker and Google Kubernetics

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page | 31

$docker push <image> :< tag version> // Push the tagged image into docker registry

$kubectl set image deployment/springdocker springdocker=tapas1975/gs-spring-boot-docker:v2 //Set

the deployment target to a new image (let‘s say v2)

 //Set the deployment target to a new image (let’s say v2

Yellow color boxes have v2 is running with one new replication controller. Once it‘s running, then

replication controller will make it 2 pods as the scale of the application was 2. Here is the final state

after deployment.

Once the deployment is done V2 pods will be active and slowly V1 pod will go away.

The above UI which we used for live monitoring. I downloaded the following UI code and modified

as per our need.

https://github.com/omerio/k8s-visualizer

Download the code execute the following command

$cd k8s-visualizer

$kubectl proxy -w=.

Here is the sample screen shot when we scaled the application from 3 pods to 4 pods

Here are following commands to scale a number of pods to 4. Auto-scaling also can be done based on

resource utilization of PODS.

$kubectl config use-context minikube //Switch the context to minikube if you are locally testing this.

$kubectl scale --replicas=4 deployment springdocker // Simple scaling

kubectl auto scale deployment springdocker --min=2 --max=4 --CPU-percent=20 // Scaling based on CPU

utilization. The minimum number of pods are 2, and a maximum number of pods can go up to 4 if

CPU utilization increases more than 20 percent.

https://github.com/omerio/k8s-visualizer

Docker and Google Kubernetics

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page | 32

Yellow color is indicating pending pod.

● White indicates a healthy node

● Red indicates a non-healthy node

● Grey indicates a running pod

● Yellow indicates a pending pod

● Green indicates a service

● Blue indicates a replication controller/Replication Sets

Kubernetes does an excellent job of recovering when there's an error. When pods crash for any

reason, Kubernetes will restart them. When Kubernetes is running replicated, end users probably

Docker and Google Kubernetics

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page | 33

won't even notice a problem. Kubernetes recovery works very well in case of out of memory error.

This recovery happens so smoothly, that DevOps team can also miss it unless there is monitoring on

it.

5. LESSON LEARNED (ANTI PATTERN AND VALID PATTERN)

This brings me to share some of the lesson learnt as part of this journey.

5.1. Layered Service Architecture

One common mistake people made with SOA were misunderstanding how to achieve the re-usability

of services. For example, several services functioned as a data access layer (ORM) to expose table as

service with the assumption that it will highly scalable. This created a physical layer which caused

delivery dependency. Any service created should be highly autonomous – meaning independent of

each other.

Try to look at service as one atomic business entity which must implement to achieve the desired

business functionality and scalability.

5.2. Avoid manual Configuration

Set up the micro-service cluster and monitoring is painful activities unless one is using some

framework like Kubernetes and we should have monitoring like New Relic, Datadog, heapster, etc.

5.3. Service discovery and API Gateway

Service discovery is very important where one service can talk to each other without any IP address.

Kubernetes framework provided out of the box facility like Cluster PORT, Node PORT and external

load balancer for cloud provider for exposing service. AWS ECS is also providing micro-services but

does not provide any out of the box service discovery feature. One can use Hasicorp Consul to

achieve service discovery in AWS.

Invest in API Management solutions to centralize, manage and monitor some of the non-functional

concerns and which would also eliminate the burden of consumer's managing several microservices

configurations

Docker and Google Kubernetics

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page | 34

 Versioning and rolling deployment

Have a versioning strategy that can allow the consumers a graceful migration to a higher version.

5.4. AWS load balancing

Here is one of the recommended approaches for load balancing in AWS.

It‘s much better to approach is to configure a load balancer such as HAProxy or NGINX in front of

the Kubernetes cluster. Kubernetes clusters inside a VPC/VPN on AWS and using an AWS Elastic

Load Balancer to route external web traffic to an internal HAProxy cluster. HAProxy is configured

with a ―back-end‖ for each Kubernetes service, which proxies‘ traffic to individual pods.

This two-step load-balancer setup is mostly in response AWS ELB's fairly limited configuration

options. One of the limitations is that it can‘t handle multiple vhosts. This is the reason for using

HAProxy as well. Just using HAProxy (without an ELB) could also work, but you would have to

work around dynamic AWS IP addresses on the DNS level.

6. CONCLUSION

There are multiple ways one can deploy container service. Some of the popular ways is to use open

source frame work like Docker Swarm, Kubernetes, Mesos or cloud provided service like AWS ECS.

One can choose any framework but considering above discussion points, we are recommending to use

Kubernetes framework because of its key features like out of the box service discovery, portability,

namespace configuration, features like config map, a secret map, ingress load balancer, local

deployment support with minikube and persistence volume support. Among multiple cloud providers,

AWS is now one of the popular choices for many customers.

REFERENCE

[1] Gonzalez-Garay, M.: The road from next-generation sequencing to personalized medicine. Pers. Med.

11(5), 523–544 (2014)

[2] DePristo, M., Banks, E., et al.: A framework for variation discovery and genotyping using next-generation

DNA sequencing data. Nature Genet. 43(5), 491–498 (2011)

[3] Li, H., Durbin, R.: Fast and accurate short read alignment with burrows and wheeler transform.

Bioinformatics 25(14), 1754–1760 (2009)

[4] Wang, K., Li, M., Hakonarson, H.: Annovar: functional annotation of genetic variants from high-

throughput sequencing data. Nucleic Acids Res. 38(16), e164 (2010)

[5] Guerrero, G., Wallace, R., Vázquez-Poletti, J., et al.: A performance/cost model for a cuda drug discovery

application on physical and public cloud infrastructures. Concurrency Comput: Pract. Experience 26(10),

1787–1798 (2014)

Docker and Google Kubernetics

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page | 35

[6] Folarin, A., Dobson, R., Newhouse, S.: NGSeasy: a next generation sequencing pipeline in Docker

containers. F1000Research 4, 997 (2015)

[7] B. Kepes, "VoltDB Puts the Boot into Amazon Web Services Claims IBM Is Five Times Faster", Forbes,

Aug 2014, [online] Available: www.forbes.com/sites/benkepes/2014/08/06/voltdb-puts-the-boot-into-

amazon-web-services-claims-ibm-5-faster

[8] J. Petazzoni, "Linux Containers (LXC) Docker and Security", Jan. 2014, [online] Available:

www.slideshare.net/jpetazzo/linux-containers-lxc-docker-and-security.

[9] Thota, S., 2017. Big Data Quality. Encyclopedia of Big Data, pp.1-5.

https://link.springer.com/referenceworkentry/10.1007/978-3-319-32001-4_240-1

[10] B. Butler, "Containers: Buzzword du Jour or Game-Changing Technology?‖ Network World, Sept. 2014,

[online] Available: www.networkworld.com/article/2601925/cloud-computing/container-party-vmware-

microsoft-cisco-and-red-hat-all-get-in-on-app-hoopla.html.

[11] Garzon, J., Lopéz-Blanco, J., Pons, C., et al.: Fro dock: a new approach for fast rotational protein-protein

docking. Bioinformatics 25(19), 2544–2551 (2009)

[12] Metz, C. 2015. Google is 2 billion lines of code—and it‘s all in one place. Wired (September);

http://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/

[13] Burrows, M. 2006. The Chubby lock service for loosely coupled distributed systems. Symposium on

Operating System Design and Implementation (OSDI), Seattle, WA.

[14] Verma, A., Pedrosa, L., Korupolu, M. R., Oppenheimer, D., Tune, E., Wilkes, J. 2015. Large-scale cluster

management at Google with Borg. European Conference on Computer Systems (EuroSys), Bordeaux,

France.

[15] Hadoop For Dummies Dirk deRoos, Paul C. Zikopoulos, Bruce Brown, Rafael Coss, and Roman B.

Melnyk, John Wiley & Sons, Inc., 1st edition 2014.

[16] https://x-team.com/blog/introduction-kubernetes-architecture/

[17] https://github.com/omerio/k8s-visualizer

[18] https://amdatu.org/generaltop/gettingstarted/

[19] https://www.linux.com/learn/rolling-updates-and-rollbacks-using-kubernetes-deployments

[20] Simanta Shekhar Sarmah, Data Migration, Science and Technology, Vol. 8 No. 1, 2018, pp. 1-10. doi:

10.5923/j.scit.20180801.01.

Citation: Tapas Chakraborty, (2019)”Docker and Google Kubernetics”, International Journal of Research

Studies in Computer Science and Engineering (IJRSCSE), 5(4), pp.24-35. DOI: http://dx.doi.

org/10.20431/2349-4859.0504004

Copyright: © 2019 Authors, This is an open-access article distributed under the terms of the Creative

Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,

provided the original author and source are credited.

https://link.springer.com/referenceworkentry/10.1007/978-3-319-32001-4_240-1
https://x-team.com/blog/introduction-kubernetes-architecture/
https://github.com/omerio/k8s-visualizer
https://amdatu.org/generaltop/gettingstarted/
https://www.linux.com/learn/rolling-updates-and-rollbacks-using-kubernetes-deployments
http://dx.doi/

