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1. INTRODUCTION 

Many systems in real world have high complexity. Complexity of these systems is due to high number 

of entities and their relations that makes them unrealizable. Network modeling of the relation between 

systems is among methods for reducing the complexity of these systems. These networks are modeled 

as graph, where entities are illustrated by nodes and relation between entities are showed by edges. 

Many of social, biological and information systems can be described nicely by networks. So, study on 

complex networks includes social networks, is interested by many of researchers. 

Social networks in online environment are active through social networks’ channels through, also, social 

networks let people to state their relations. Relation with others or link them to other results in potential 

benefits such as cooperation improvement and data sharing, increase productivity and advanced 

communications between participants, business participants and customers [1]. 

Social networks analyzers are following the most optimized communication networks, discover 

common patterns in such networks and tracking information stream (and other resources) through them. 

Recognizing these relations and networks, effects on people and organizations. Therefore, social 

network analyzers, study on two people relation and interpret their performance according to relation 

of these two people with other members of network [2]. 

Link prediction is a well-studied and challenging data mining task associated with network theory and 

social network analysis [3]. Link prediction means likelihood prediction of future communication 

between two nodes, assuming that currently there is no relation between these two nodes. Link 

prediction problem can be studied based on three general approach [4]: most likelihood-based approach 

where by using detailed rules and special parameters that are achieved by maximizing observed 

structure likelihood, a model for organizing network structure is assumed and probability of making 

any non-existent link is determined based on these rules and parameters. Common models for network 

organizing are hierarchical structure model and stochastic block model. Approach based on 

probabilistic model, where, first a model includes sums of adjustable parameters is created and optimal 

value of these parameters are discovered by using optimization strategy; such that resulted model can 

reflect better structures and relations from network characteristics. In the approach, three basic methods 
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are include probabilistic relational model, probabilistic entity relationship model and stochastic 

relational model. Similarity-based approach, where all parities of non-existent nodes are ranked based 

on similarity index, and probability of making link between those pair nodes with maximum similarity, 

is higher. Similarity-based approach includes two sets of indices: similarity indices based on node 

properties that use node-related information such as their profile in online social networks for explaining 

similarity between nodes. Similarity indices based on structure that use network structural (topology) 

information in order to calculate similarity between two nodes. Structure-based similarity indices are 

regarded from three viewpoints: local, global and quasi-local indices. Local indices use neighborhood 

information of nodes. 

Global indices need global topologic information, and quasi-local indices do not need global topologic 

information but use more information than local indices. 

In this study, a similarity based approach is used. Also, label propagation concept is used for link 

prediction and in order to increase accuracy in link prediction algorithms by using label propagation, 

shortest path distance is used for propagating label in network.  

Following, in second section, last researches in link prediction are studied. Then, in section III, link 

prediction algorithm by using label propagation is studied. In section IV, algorithm optimized method 

is explained in details. Section V studies on results and finally, discussion and conclusion is presented 

in section VI. 

2. RELATED WORK 

Label Propagation [5] is a network community detection algorithm first proposed by U. N.Raghavan et 

al. An effective and efficient method that uses network structure for process evaluation and does not 

need any prerequisite such as community number and size. Assume that X node is in network. X has 

neighbors X1, X2,…XK that each neighbor includes a label that indicates its community type. For 

example, X1 belongs to societ1 and X2 belongs to community 2. In this algorithm, each nodes in graph 

has a dedicated label. Then, in each step, each node take its neighbor’s label and replace more frequented 

label with its one. If label frequency is even, then randomly selects a label. At last, all nodes in 

community, get a label. 

Research [6] are introduced link prediction based on node-connected clustering approach for predicting 

link. In this connection method, nodes of common neighbor mix a predicted node with cluster geometry 

of node. Approaches in this study not only consider coordination between connection degree of nodes 

of common neighborhood and cluster information of network, but also introduces different roles of 

nodes for link prediction. According to tests of this study, approaches of clustering information of a 

network by using clustering each node, need less time complexity. Also, approaches in this study are 

more proper for very large scale networks. 

Ref. [3] use graph parallelism for link prediction. Bulk synchronous parallel model is an invented 

framework for parallel graph algorithms. This paper uses parallel label propagation algorithm to detect 

community and a Adamic-Adar-based metric based on parallelism information in order to link 

prediction. These algorithms are coordinated by using infrared synchronous programming model and 

are tested through large network with various domains. 

Cui et al. [7] stated that link prediction method based on common neighbor-based indices have 

tremendous progress. This research proposes that if limit is considered under similarity degree of node-

pair, then it would be possible to considerably improve this method. 

Sun et al. [8] have introduced concept of node degree and the idea of community structure, proposed a 

new similarity index called “local affinity structure”, and described local affinity structure of a node 

and their common neighbors. 

In [9] have proposed balanced factorization machine to facing challenges of link prediction, where link 

predictions in very scattered networks are implemented through learning interactions between network 

nodes and edges in a supervised learning environment. 

Ding et al. [10] in order to link prediction, have extracted community structure by using network local 

information. Then, relation of each pair of societies are calculated by using new indices of community 

relationship and finally use a simple prediction model based on linear deduction to evaluate probability 

of non-existed links. 
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In [11] have proposed a new idea for link prediction by merging two methods of link prediction based 

on similarity score and stochastic link prediction that is placed in a new category of link prediction 

methods. This idea uses probabilistic techniques to obtain similarity scores between nodes which has 

better results than other methods in standard data sets. 

Ahmed et al. [12] have introduced a fast similarity-based method for predicting probabilistic links in 

time networks. In this method, first snapshots of network are connected to a weight diagram. Then, 

through stochastic walking, an under axis graph is created in each node in weigh diagram. This under-

graph area includes a set of start paths of considered node. Because similarity score in such small axis 

under-graphs are calculated in each node, then algorithm can reduce considerably the calculation time. 

3. MATERIALS AND METHODS 

3.1. Link Prediction Algorithm by using Label Propagation 

In [13] have proposed a type of improved label propagation process related with link prediction that 

uses dynamic interaction processes in order to obtain likely links. Also, uses network structure that is 

very effective in predicting non-existent links and future links. Proposed algorithm in this paper that is 

introduced by link prediction by using improved label propagation, in first iteration assign a distinct 

memory and special label to each node in network (Fig1(a)). In next iteration processes. Each node is 

randomly selected to get a label from its neighbors. Then, neighbors randomly select a label from their 

memory and send for applicant node. For example, assume that in Fig1 graph, nodes {3,5,1,4,2}are 

selected randomly as receiver list. Therefore, node 3 is the first receiver of information from its 

neighbors. It is clear that node3 receives labels 1,2 and 5 because its neighbors just have one label in 

their memory. 

 

Fig1. The trend of ILP label propagation 

Then, node5 is the next receiver. When node 3 sends its label, randomly selects one of the elements 

{3,1,2,5} from memory because in this time, node 3 is finished second iteration. Assume node 3 

randomly selects and sends label 3, so node5 includes label {5,1,2,3,4} in its memory. 

During the receiving process, assume that node 1 receives two label 2 from nodes 3 and 5, node 4 

receives label 2 from node 2 and label 3 from node 5, node 2 receives labels {1,2,2} from nodes 3,4,5. 

Fig1(b) shows final result after second iteration.  

In order to clear the trend of calculating the possibility of likely links, trend of label reproduction is 

stopped after second iteration. Fig2 shows that three links (1,2), (1,4) and (3,4) are non-existent in graph. 

So, in order to get possibility of link (1,2), memory of nodes 1 and 2 are investigated. There are two 

label 2 in memory of node1. Instead, there is a label 1 in memory of node 2. Therefore, possibility of 

making a link between node 1 and node 2 is MAX {1,2}=2. Also the possibility of making a link 

between nodes (1,4) is zero and possibility of making link between nodes (3,4) is 1. 

3.2. Improved Method 

Input of problem is improved method, a undirected and unweight network, and output of algorithm are 

links that are predicted for network. In first step, a memory is assigned to each node of network. Main 

step of this algorithm is filling memory of nodes by using the shortest path algorithm. In next step, non-

existent links are scored by using similarity of labels located in memory, and finally link prediction is 

implemented according to these scores. Steps of implementing proposed method is illustrated in block 

diagram of Fig2. 

 

Fig2. Block diagram of main steps of research 
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3.2.1.  Assigning Memory and Unique Label to Nodes 

A simple, undirected and un-weighted network is the input of this step. In this step, a dedicated memory 

is assigned to each node of network, where a unique label that is considered for each node, is stored in 

first cell of memory of each node (Fig.3). Then, the nodes centrality is calculated based on degree 

centrality, i.e. nodes with higher degree are placed in center. Therefore, nodes are selected based on 

their degree centrality order and receive the label of their neighbors. In Fig.3 nodes selection based on 

their degree centrality are 5,3,2,4,1 respectively. 

 

Fig3. Memory assignment for each node and storing the unique label of each node 

3.2.2. Memory Filling of Label Requested Nodes 

In this step, the first node is selected based on higher centrality, to receive label from adjacent nodes. 

Then, adjacent nodes use shortest path algorithm to transfer in-memory labels such that, adjacent node 

selects a label from its memory with minimum distance to itself. In must be noted that in this step, 

adjacent nodes beware of calculating the shortest path between their node and node with label of 

applicant node. Also, do not consider the shortest path to their node. If there are a number of label with 

the same distance then, adjacent node randomly selects one of the labels and send for nodes requested 

for label. In the following, to better understand the trend, steps of proposed method are discussed with 

an example. 

In Fig.4, according to maximum degree centrality, node5 is selected as the first node that receives label 

from its neighbors. Because adjacent nodes of node5 only have one label in their memory, they send 

the same labels for node5 and node5 receives labels 1,2,3,4 from its neighbors. 

Due to degree centrality of nodes, node3 is selected as next node to complete its memory with labels 

that are received from its neighbors. Node3 is the node that receives label from nodes 1,2,5. Because 

node5 complete its memory in this step, transfer a label from its memory with the minimum distance to 

itself. As the shortest path from node5 to itself is zero, it is not calculated. Also, calculating the shortest 

path to label of receiver node is ignored (label3) because, selection and transferring this label to receiver 

node does not have any effect on calculating the score between non-existent links. Hence, according to 

these conditions, the shortest paths between node5 and label of nodes 1,2,4 are calculated. Because the 

distance of the shortest path between label 3 and 5 is ‘1’, node5 randomly selects one the labels and 

sends for node3. Here, consider that node5 selects label4 and sends it for node3. Nodes 1,2 also because 

have one label in their memory, select label 1 and 2 for node3, respectively. 

Due to degree centrality of nodes, node2 is considered as the next node. According to Fig.4, adjacent 

node3 includes labels {3,1,2,4} in its memory where labels 2,3 are not considered for calculating the 

shortest path in proposed method and the distance of shortest path from node3 to other labels 3,4 is 

calculated. The distance of the shortest path from node3 with labels1,4 are 1 and 2 respectively. 

Consequently, node3 sends label1 to node2 because has the minimum distance of the shortest path than 

other labels. 

Node5 also randomly selects label1 from labels {1,3,4} and send for node2. Node1 sends label1 for 

node2, too. As the result, memory of node2 includes labels {2,4,1,1}. 

According to degree centrality of nodes, next node is node4. Node2 includes labels {2,4,1,1} in its 

memory where the distance of the shortest path from node2 with labels1 and1 are 2 and2 respectively. 

Therefore, node2 sends label1 for node4. Node5 due to equality of distance of the shortest path with 

other labels, randomly selects label3 from labels 1,2,3 and sends it for node4. Memory labels of node4 

are figured in Fig.4. 

As figure4 shows, node1 receives label2 from neigbor3 and label3 from neighbor5, respectively. 
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Fig4. Step of Completing Memory of Nodes 

First iteration will end after all nodes in network complete their memory. This step iterates t times and 

each time more labels are added into memory. Here in order to characterize the method of calculating 

non-existent links in network, label propagation process is stopped after this iteration. 

3.2.3. Calculating Scores for Non-Existent Links in Network 

Calculation the scores of non-existed links is based on maximum in-memory information. Fig5. Shows 

three non-existed links(1,2),(1,4) and (4,3). The number of in-memory label similarity is used in order 

to obtain scores for non-existed links in network. Therefore, to calculate non-existed link probability 

(1,2), the number of labels of node2 in memory of node1 and number of labels of node1 in memory of 

node2 are investigated. So, the probability of making a connection between two nodes is explained as: 

   S(x, y) = MAX { 𝑓𝑦(𝐿𝑥(𝑡)) , 𝑓𝑥 (𝐿𝑦(𝑡)) }                                                                                                                         (1) 

Where, S(x,y) is the probability of making a link between two nodes x,y in future. fx is the number of 

labels of node x in memory of node y. Ly(t) is all current labels in memory of node y in tth iteration. 

Therefore, the probability of making a link between node1 and 2 is the maximum label frequency. 

Hence, the score of link (1,2) is MAX {2,1} =2. Also, in order to obtain the score of non-existed link 

(1,4), the number of similar labels in the memory of nodes 1 and 4 are checked. In memory of node4 

there is a labels of node1 but memory of node1 lacks of any labels of node4. So, the score of link (1,4) 

is MAX {1,0} =1. Similarly, the score of non-existed link (3,4) is MAX {1,1} =1. 

  

Fig5. Calculating scores for non-existent links 

3.2.4. Link Prediction Based on Score 

In this step, links are ordered decently in a list based on their score. High score for each pair of 

disconnected nodes refers to high probability of connection between these two nodes in future. Whereas, 

low score refers to low probability of connection between these two nodes. Fig.5 according to the scores 

of non-existent links, shows that links (1,2) have the highest scores than other non-existent links, 

therefore the prediction probability for the future link between nodes 1,2 is high. So, it is possible to 

predict future newborn or non-existent links or invisible links in current networks, through the rank of 

similar scores.  

4. EXPERIMENTS & RESULTS 

4.1. Data Set 

Experimental data in this research include American college football network [14], Net Science [15], 

Email network [16] and Power network [17]. Table1 presents the specification of these data. 
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Table1. Data Set Specification 

Average 

degree 

Average 

clustering 

coefficient 

Graph 

diameter 

Average 

shortest path 

distance 

Links Nodes name 

10.661 0.403 4 2.508 613 115 Footbal 

3.451 0.878 17 5.823 2742 1589 NetScience 

9.622 0.22 8 3.606 5451 1133 Email 

2.669 0.107 46 18.989 6594 4941 Power network 

4.2. Dataset Preparation and Accuracy Metric 

In order to test the accuracy of the algorithm, current network links are divided randomly into two parts: 

training set and probe set. Training set acts as known information and probe set acts as unknown set 

and any information in probe set are not permitted to be used in prediction operation [4]. In link 

prediction method, a similarity score is considered for each non-existent or invisible link in training set 

which determines the possibility of link creation.  Therefore, non-existent links with higher similarity 

score are predicted as future links. AUC metric is used for accuracy measurement. In a custom, 

undirected and un-weighted network G(V, E) where V is a set of nodes and E is a set of links, possibility 

AUC is interpreted as: the score of a missed and randomly selected link (a link in probe set) is higher 

than a non-existent and randomly selected link (member of U-E). If n independent comparisons are 

performed, the number of missing links having a higher score than the nonexistent links is 𝑛−1, the 

number of missing links having the same score as the nonexistent links is 𝑛−2 , and the number of 

missing links having a smaller score than the nonexistent links is 𝑛−3. The AUC value is defined 

[13]                                                          

𝐴𝑈𝐶 =
1×𝑛−1+0.5×𝑛−2+0×𝑛−3

n
                                                                                                                     (2) 

Obviously, if all links are segmented and all scores are selected randomly then  𝑛−1 = 𝑛−2 = 𝑛−3 =
1

3⁄ 𝑛 and AUC is 0.5. So, degree higher than 0.5 refers to better performance of algorithm than pure 

chances. 

4.3. Experiments results 

To do a sound and ensured investigation of experimental results, the experiment is ten then times and 

average results are obtained between cost and performance. We considered t iterations to 100 iterations 

for each network. In figures 7,8,9 and 10, horizontal axis shows the percent of observed links in network. 

If all current links is data set are considered 100%, 90% (or 0.9) of links means that 90% of all links are 

placed randomly in training set and are known as observed links in network and 10% remained links 

are placed in probe set and are known as missed links in network. Hence, initially and in 0.1 of observed 

links, network includes many of missed links. 

The input of implementation method based on proposed idea are observed links or the same current 

links in training set. Then, according to the proposed method, a score is considered for each non-existent 

link in this set. Following, current links in probe set are used for accurate evaluation of proposed method 

with AUC metric. 

Figure.6 shows the improvement scale of implemented method based on proposed idea through basic 

method on football network data set that is evaluated with AUC metric. As it is illustrated in this figure, 

proposed method about the links that are more missed, has a close accuracy to basic algorithm but by 

gradually raising the curve trend, it is clear that prediction accuracy of proposed method is better than 

basic method. 

Figure.7 shows the improvement rate of implemented method based on proposed method through basic 

method on NetScience data set that is evaluated with AUC metric. As it is figure shows, proposed 

method about the links that are more missed, has a close or lower accuracy to/than basic algorithm but 

by gradually raising the curve trend and lowering the missed links, it is obvious that prediction accuracy 

of proposed method is better than basic method in 80% of observed links. 

Figure.8 shows the improvement rate of implemented method based on proposed method through basic 

method on Email data set. As this figure shows, the accuracy of proposed method is in most of cases in 

curve trend, better than basic algorithm. 

Figure.9 presents the comparison between the performances of proposed method based on proposed 

idea through basic method on Power network set. According to this figure, curve is mostly flat. Because 
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power network has the maximum mean of the shortest length of path and minimum network clustering 

coefficient. 

 

Fig6. Comparison of the performance of proposed method and basic algorithm(ILP) in fottbal data set 

 

Fig7.comparison of the performance of proposed method and basic algorithm(ILP) in Net data set 

 

Fig8. Comparison of the performance of propossed method and basic algorithm(ILP) in Email data set 

 

Fig9. Comparison of the performance of propossed method and basic algorithm(ILP) in Power network data set 

5. CONCLUSION 

This paper presents a method for improving link prediction accuracy in social networks based on label 

propagation where uses the distance of shortest path for label propagation among memories. In compare 

with basic algorithm, this paper invented the using of the shortest path for selecting in-memory labels 

that results to improvement of the prediction accuracy. In this method, the improvement rate of proposed 
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method by using AUC evaluation metric in football network was 26.4%, in NetScience network was 

4.4% and in Email network was 20.6% that totally the improvement mean of proposed method is 

17.133%. It is recommended that in future researches, this method to be evaluated on directed and 

weighted networks. Also, as the process of running algorithm needs high computing time, it is 

recommended that the parallelism techniques to be evaluated. 
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