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1. INTRODUCTION 

Production forecasting of oil wells in the petroleum industry has been carried out for decades using 

the Arps equations. These models yield reliable estimates which can be used to forecast future 

production. Since the adoption of the Arps models, multiple decline models have been proposed by 

various authors, one of which is the logistic growth model. The industry has however been slow to 

adopt the new methods for forecasting petroleum production.  

The logistic growth model equation is a newly propounded empirical model used for production 

forecasting. It is a population growth model from the field of biology, where its formula was likened 

to petroleum forecasting after empirical manipulation. It has a term referred to as the carrying 

capacity, this carrying capacity is the maximum size a population can grow to, at which point the size 

of the population will stabilize and the rate of growth will terminate (Spencer and Coulombe, 1966). 

This concept is applied to the field of petroleum engineering, in that, there is an early-time region 

which ultimately leads to a middle-time region during production from a well. This empirically 

imitates the logistic growth model; therefore, they can be related mathematically. This form of the 

model proposed is adopted from an equation found in work by Spencer and Coulombe (1966), which 

was used to model the regrowth of livers. They proposed a simple mathematical model to predict this 

growth, with the original size of the liver before reduction being used as the carrying capacity.  For 

the purposes of forecasting production in oil and gas wells, the model has been altered through 

empirical analysis to concur with petroleum parameters.  

Production Forecasting is an important input into the decision-making process and investment 

scenario evaluation, which are crucial for an upstream organization. The production forecast flows 

through the central nervous system of an organization and helps to identify opportunities and decide 

on the best way forward (Watts, 2016). There are many reasons for making production forecasts, and 
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to make it even more complex, the different purposes quite often have several aspects. Often, the 

overall integrating factor is that forecasts are made to see how the maximum value of an asset can be 

achieved. 

This paper aims to make a comparison between the forecast accuracies of the logistic growth model 

and the Arps exponential decline model in oil and gas wells. 

1.1. Logistic Growth Model  

This model was developed by mathematician Verhulst in 1838. The theoretical background of this 

model entails a biological population withlots of food, space to grow and no threat from predators, 

which tends to grow at a rate that is proportional to the population. That is, in each unit of time, a 

certain percentage of the individuals produce new individuals.Verhulst drew inspiration from Malthus 

(1872)'s theories, which proposed that the population of a specific country or region could only 

expand up to a certain extent before resource competition would lead to a stabilization of 

growth.Logistic growth models have been previously utilized in the petroleum industry, specifically 

through Hubbert's model. Hubbert's model (1956) was employed to predict production for entire oil 

fields or regions. However, the model under investigation in this study diverges from Hubbert's model 

as it focuses on forecasting production for an individual well. 

1.1.1. Applications 

Equation 1 represents the generalized form of the logistic growth model, where a significant 

component is the concept of carrying capacity. The carrying capacity signifies the maximum size that 

a population can attain, leading to stabilization and the cessation of growth rate. Tsoularis and 

Wallace (2010) developed a comprehensive equation by combining various factors to derive this 

generalized form. 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁α[1 − (

𝑁

𝐾
)β ]γ                                                                                                                                         (1) 

Where; N = Population 

r = Constant   

 α = Exponent   

 β = Exponent   

 γ = Exponent   

 K = Carrying Capacity 

According to Clark (2011), the Logistic Growth Models have come to be used in different fields 

including the petroleum industry. The generalised Equation 1 above has been altered through 

empirical analyses to yield Equation 2: 

 Q t =  
Ktn

a + tn
                                                                                                                                                       (2) 

Where; Q = Cumulative Production 

 K = Carrying Capacity 

 a = Constant 

 n = Hyperbolic Exponent 

 t = Time 

The logistic growth model is a growth equation. In this case, the growth is cumulative oil or gas 

production. The derivative with respect to time can be taken to obtain the rate form which is 

penultimate to this work. We arrive at Equation 3: 

                       q(t) =
dQ

dt
=

Knbtn−1

 a + tn 2
                                                                                                        (3)   

Where; q = Production Rate. 
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While it does not appear to be so in this form, this is a specific case of the generalized logistic growth 

model (eq. 1) shown above where „r‟ is equal to n(K/a)1/n, „α‟ is equal to 1-1/n, „β‟ is equal to 1 and 

„γ‟ equals 1+1/n. 

1.1.2. Method 

In practical applications, the logistic growth model requires the determination of either two or three 

unknown parameters to achieve a proper fit with production data. These parameters include the 

carrying capacity (K), the hyperbolic exponent (n), and the constant (a). The carrying capacity 

represents the maximum recoverable amount of oil or gas from primary depletion in the well, 

disregarding time or economic limitations. Essentially, K serves as an estimate of the well's Estimated 

Ultimate Recovery (EUR) without economic constraints. It functions as a constraint on cumulative 

production, eventually leading to a decline in the production rate to zero. As cumulative production 

approaches the carrying capacity, the rate gradually diminishes until reaching termination. The 

determination of the number of unknowns in the equation also hinges on the value of this parameter. 

The Estimated Ultimate Recovery (EUR) can be derived through volumetric calculations and a 

recovery factor. In cases where the initial EUR is unknown before well production, it can be 

employed as an adjustable parameter. By optimizing the fit to the data, the value of K can be 

determined. The logistic model demonstrates high flexibility and allows for multiple satisfactory fits 

to the data when the carrying capacity is not known in advance. Figure 1 provides an illustration of a 

shale gas well where different carrying capacities were utilized, resulting in reasonable fits for all 

three scenarios. 

 

Figure1. Rate vs. Time Data Fit with the Logistic Model using varying „K‟ Values ( Clark, 2011) 

Once the status of the carrying capacity being known in advance is established, the next step involves 

determining the hyperbolic decline exponent. Regardless of whether or not the carrying capacity (K) 

is known beforehand, the constant (n) must be determined. The value of n plays a crucial role in 

governing the decline behavior of the model and enables it to exhibit greater flexibility for a more 

accurate fit to the production data. 

In order to illustrate the impact of the parameter "n" on forecasts, dimensionless terms were 

introduced to the analysis. These include the dimensionless rate (qD), which represents the production 

rate relative to the peak production rate, and the dimensionless cumulative (QD), which normalizes 

the cumulative production based on the carrying capacity. In this form, the dimensionless cumulative 

reflects the fraction of the EUR that has been recovered. As the oil/gas well approaches the EUR, the 

QD value tends to approach 1. Figure 2 presents the relationship between the dimensionless rate and 

dimensionless cumulative, showcasing different values of the decline exponent. 
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Figure2. Dimensionless Curve for Varying „n‟ Values (Clark, 2011) 

Figure 2 illustrates the behaviour of the model within the range of n values from 0 to 1. The specific K 

and a values used in this example are arbitrary and do not impact the general understanding of the 

model's behaviour. The parameter 'n' plays a crucial role in determining the steepness of the decline 

curve. For smaller values of 'n,' the well experiences a rapid initial decline, followed by a stabilization 

at a lower production rate with a slower decline over time. Conversely, higher 'n' values result in a 

more gradual decline throughout the lifespan of the well. When 'n' exceeds 1, the model exhibits an 

inflection point where the production rate briefly increases before declining. This behaviour does not 

indicate a forecasting error but can be utilized to match data for wells that do not initially reach their 

peak rate. 

The third parameter, 'a,' represents the time to the power of 'n' at which half of the carrying capacity 

has been reached. It is important to note that this is not equivalent to half of the time it will take for 

the well to reach its carrying capacity. Equation 4 demonstrates that as time to the power of 'n' 

approaches 'a,' the logistic model approaches half of the carrying capacity 

lim

tn  →  a
 

Ktn

a + tn =  
K

2
                                                                                                                                          (4)  

This results in a similar behaviour for 'a' as seen with the initial decline parameter ('di') in the Arps 

equation. When 'a' has a lower value, the production rate experiences a rapid decline before 

stabilizing. On the other hand, a higher value of 'a' leads to a more consistent and stable production 

throughout the lifespan of the well. In simpler terms, a very low 'a' value indicates a high initial 

production rate, followed by a rapid recovery of half of the EUR, and subsequently, a gradual decline 

with a low production rate for an extended period. Figures 3 and 4 depict the relationship between 

dimensionless rate versus time and dimensionless cumulative versus time, respectively, for different 

values of 'a'. 

 
Figure3. Dimensionless Rate vs. Time for Varying „a‟ Values (Clark, 2011) 



Comparative Performances Analysis of Exponential Decline Curve Method and Logistic Growth Model 

in Oil and Gas Wells Forecasting 

 

International Journal of Petroleum and Petrochemical Engineering (IJPPE)                                   Page | 49 

 

Figure4. Cumulative Production vs. Time for Varying „a‟ Values (Clark, 2011) 

In Figures 3 and 4, the range of 'a' values varies from 10 to 100. It is noticeable that lower 'a' values 

result in an initial steep decline, followed by a stabilization at a significantly lower decline rate. 

Conversely, higher 'a' values exhibit a more gradual decline over time. 

1.2. Arps Exponential Decline Model 

For the exponential decline model, the hyperbolic decline constant, b, is assumed to be zero since this 

is an exponential function. The exponential decline model is derived from the hyperbolic decline 

model. The generalized form of the exponential equation proposed by Arps (1944) is shown in 

Equation 5: 

𝑞 = 𝑞𝑖𝑒−𝑑𝑡                                                                                                                                                               (5) 

Where, q = current production rate  

qi = initial production rate 

t = cumulative time since the start of production 

d = dt = nominal decline rate (a constant). 

2. METHODOLOGY  

Data from a gas producer and an oil producer were obtained and used to compare the goodness of fit 

of both forecasting methods. The process involved predicting production rates for the analysis 

periods, calculating errors to determine accuracylevels and forecasting production 8 years into the 

future to see the nature of the generated curves.  

The gas well produces entirely under depletion, with support only from an underlying aquifer. It 

produces mainly gas and some condensate. The oil well is supported by gas and water injection. There 

is no support derived from an aquifer or gas cap. It produces oil and gas only. Declining production 

rates in the gas well are mainly due to declining reservoir pressure, while declining rates in the oil 

producer are due to a combination of gas breakthrough, formation damage and declining reservoir 

pressure. 

2.1. Exponential Decline Analysis 

Equation 5 was used to estimate gas and oil production rates, assuming the initial rates and time 

variations of 1 day. The decline rate was solved for numerically using the Solver feature in Microsoft 

Excel. This permitted the use of the decline rate that gave the best production decline fit. 
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2.2. Logistic Growth Production Curve Fitting 

There are two preferred methods for fitting the logistic growth model to the data. The first method 

involves optimizing the parameters with a numerical scheme, and the second method involves 

linearizing the equation and plotting it on a Cartesian grid to obtain the parameters. This paper applies 

only the numerical optimization method. The numerical optimization was performed using the 

Microsoft Excel Solver. This allowed the most accurate forecasts to be estimated. Equation 2 was 

used to generate production rates by first calculating cumulative production and finding the difference 

between consecutive values. The parameter that was known to a degree in both cases was the carrying 

capacity, K. K was assumed to be the contacted reservoir volume for both wells. These figures were 

obtained from rate transient analysis using available production data. The K values placed a limit on 

the possible cumulative production from the well and allowed for more reasonable values of the other 

unknown parameters. Cases where K was not fixed were ran, also numerically. The resulting K values 

were unreasonably large, with corresponding unreasonable values for a and n. 

For both forecasting methods, the degree of accuracy was determined using the Mean Average 

Percentage Error (MAPE) KPI. 

3. RESULTS 

3.1. Gas Well 

Figure 5 illustrates the forecasted gas production rates against time using the Arps exponential decline 

method. Also shown are approximately two years‟ worth of the historical production rates from the 

well.The initial production rate was about 60 MMscf/d and the well produced at a fairly constant 

choke size throughout the two-year period. The Arps method can be used in this case because the 

circumstances affecting production did not change. Any forecasts into the future will therefore be 

bound by the conditions of the past, as stated by the golden rule. As can be seen, a fairly 

goodmatchbetween predicted and historical rates was obtained, with a MAPE of 2.51%. The decline 

rate that gave the best fit was 15.76% per year. Production from the well does not decline quickly, and 

this behaviour was modelled well by the Arps equation. 

 

Figure5. Resulting Fit of Exponential Decline Model with Historical Production Data 

In Figure 6, the forecasted gas production rates using the logistic growth model are shown. A carrying 

capacity of 200 Bscf of gas was used. There is little uncertainty surrounding this figure, and that gave 

way for fairly accurate values of a and n to be obtained. After numerical optimization, optimum a and 

n values of 48,828 and 1.408 were obtained. The combination of these values led to a good fit of the 

predicted production rates, with a MAPE of 2.47%. The model proved slightly more accurate than the 

Arps equation, though, forecasts may not differ much. 
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Figure6. Resulting Fit of LGM with Historical Production Data 

The forecasts for both methods were then compared to each other in Figure 7. As can be seen, and as 

expected, forecasted values 8 years into the future did not differ much between the two methods. The 

predicted LGM values were marginally less than those of the Arps equation, leading to a slightly 

lower EUR in the long run. 

 

Figure7. Arps vs. LGM Forecasts 

3.2. Oil Well 

In Figure 8, the Arps exponential decline method is utilized to showcase the expected oil production 

rates over time. The graph also includes historical production rates from the well spanning 

approximately three years. Throughout this period, as was done with the gas well, the oil well 

maintained a relatively consistent choke size, while the initial production rate was around 9,300 

STB/d. The conditions affecting production remained constant, allowing the application of the Arps 

method in this case.  
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Notably, the graph demonstrates a relatively poor match between the projected and historical rates, 

with a MAPE of 5.58%. The most suitable decline rate for achieving the best fit was determined to be 

29.27% per year. Production declines more rapidly than in the gas well. As can be seen, good matches 

were obtained early in the life of the well. After about 200 days, the model was unable to replicate the 

well‟s behaviour, leading to oil rate overestimations. After about 700 days, the model started to 

underpredict production rates. It is safe to assume that per the historical production trend, future rates 

will be higher than those predicted by the model. The Arps equation in this case may therefore 

underestimate the well‟s EUR.  

 

Figure8. Resulting Fit of Exponential Decline Model with Historical Production Data 

Figure 9 illustrates the projected oil production rates based on the logistic growth model. A carrying 

capacity of 220 MMSTB of gas was utilized, and there is a high level of confidence associated with 

this value. Consequently, accurate estimates for the parameters 'a' and 'n' were obtained. Through 

numerical optimization, the optimal values for 'a' and 'n' were determined to be 206.28 and 0.4045, 

respectively. These values, in combination, resulted in a relatively well-fitting prediction of 

production rates, with a mean absolute percentage error of 2.85%. The logistic growth model 

exhibited much better accuracy compared to the Arps equation. Unlike the Arps model, it was able to 

predict the latter production rates and better predicted the production rates between days 200 and 600. 

The EUR with this model is expected to be higher than that of the Arps model. The two methods are 

compared in Figure 10. 

 

Figure9. Resulting Fit of LGM with Historical Production Data 
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Production rates from the logistic growth model were consistently higher than those of the Arps 

model for the forecasted period and provided, most likely, better production forecasts. Production 

rates were projected 8 years into the future. The LGM was able to do this by better matching the tail 

end of the production data. With the Arps model, the well reaches its economic limit faster and leads 

to a lower EUR. 

 

Figure10. Arps vs. LGM Forecasts 

4. CONCLUSIONS  

1. In the gas well, both forecast methods provided good fits to the production data, with the 

LGM providing a slightly better fit. Both models were good enough to predict future well 

performance.  

2. In the oil well, the LGM provided a better match to the production data than the Arps model. 

It better modelled the latter portion of the well‟s data trend, which most likely will define the 

well‟s future performance. 

3. The Arps model was unable to accurately predict the oil well‟s performance and may lead to 

underestimations of EUR.  

4. It was seen that prior knowledge of the carrying capacity parameter in the logistic growth 

model greatly simplified the forecast process and led to few uncertainties. 

5. The results obtained in this study are only valid for the conditions surrounding the candidate 

wells. In other wells that are subject to different production constraints, ailed by different 

problems or have different pressure support mechanisms, results may vary. 

6. Overall, the logistic growth model appears to be superior to the Arps exponential decline 

curve model. 

7. All fits will have to be rechecked over time with the addition of new production data. The 

conclusions drawn here are solely valid for the period that was analyzed. 
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