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Nomenclature  

 

𝐶𝑜 Constant (in translational velocity)  

𝐷 Pipe diameter m 

 

𝐸𝑜 Eötvös Number  

𝐹𝑟 Froude Number  

𝐹𝑟𝜃 Froude Number at pipe inclination  

𝑔 Acceleration due to gravity m/s2 

𝑀𝑜 Morton number  

𝑅𝑒 Reynolds number  

𝑁𝑣𝑖𝑠 Viscosity number  

𝑣𝑑 Drift velocity m/s 

𝑣𝑑
ℎ Drift velocity for horizontal flow m/s 

𝑣𝑑
𝑣 Drift velocity for vertical flow m/s 

𝑣𝑚 Mixture velocity m/s 

𝑣𝑡 Translational velocity m/s 

𝜌 Density kg/m3 

𝜇 Viscosity kgm-1s-1 

𝜎 Surface tension N/m 

𝜃 Pipe inclination to horizontal Degree 

𝑅 Buoyancy Reynolds number  

𝐿𝑝 Ratio of surface tension and pipe diameter against 

liquid density and viscosity (Livinus parameter) 

 

Abstract: The accurate prediction of drift velocity is essential in the modelling of multiphase flow in 

pipelines. Efforts on enhancing the applicability and predictive capabilities of drift velocity closure 

relationship in multiphase flow models for both low and high viscous fluids are increasing to better design 

and manage equipment for the production and transportation of oil resources. This work therefore present 

recent efforts on the developments of drift velocity models using different approaches, including Artificial 

Neural Network. The predictive capabilities of the developed models were evaluated by comparing with 

results from experimental data and existing correlations by error analysis. The outcomes demonstrate that, in 

overall, the difference in predictions between the developed empirical models and the ANN model is 

insignificant. However, both models, in most cases, outperform some of the notable drift velocity models 

available in open literature.  

Keywords: Rise velocity; Artificial Neural Network; machine learning; multiphase flow modelling; drift flux 

model. 
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1. INTRODUCTION 

Two phase flow is of high interest in chemical and petroleum industries, and multiphase pipe flow 

models are essential for a better understanding of the phenomena and to design equipment for the 

production and transportation of oil resources. Several of these models, for example slug flow models, 

apply a number of closure relations to link the gas and liquid phases in a one-dimensional two-fluid 

model approach, see Taitel and Barnea [1], Fabre and Line [2], and Bendiksen [3], for thorough 

studies on the modelling of two-phase slug flow. The translational velocity, which basically relies on 

the drift velocity, as shown in Equation (1) proposed by Nicklin [4], is one of such closure 

relationships in a slug flow model.  

𝑣𝑡 = 𝐶𝑜𝑣𝑚 + 𝑣𝑑         (1) 

where Co is approximately 1.2 for turbulent flows and 2.0 for laminar flows, 𝑣𝑚 is the mixture 

velocity (the sum of the superficial liquid and gas velocities), and 𝑣𝑑 is the drift velocity – the velocity 

of the long gas bubble in a stagnant liquid in tube. 

As gas bubbles’ dynamics are influenced by viscous, inertial, gravitational, and interfacial forces 

acting on them(White and Beardmore[5]), dimensional analysis has shown that four dimensionless pi 

-groups are sufficient to determine the bubble dynamics: the Froude number, which is the ratio of the 

bubble inertia to the gravitational forces; the Eötvös number, which is the ratio of the gravitational to 

interfacial forces; the Morton number, which at times is seen as the property number; and the 

inclination angle, measured from the horizontal. The choice of the pi- groups is not unique; for 

example, the inverse viscosity number, a combination of Eötvös number and Morton number, can also 

be employed. Several researchers, e.g White and Beardmore[5], Zukoski [6], Weber et al. [7], Carew 

et al. [8], Viana et al. [9], Gokcal et al. [10]; Jeyachandra et al. [11]; Moreiras et al. [12], Lizarraga-

Garcia et al. [13], Livinus et al. [14], and Tang et al. [15], have used different combinations of the 

dimensionless pi-groups and other set of independent dimensionless groups (Reynolds number, 

Weber number and buoyancy Reynolds number) to represent the dynamics, especially the drift 

velocity, of the bubbles found in a two-phase flow. Note that the mathematical definitions of these 

dimensionless groups can be found in the appendix section of this work. 

Table A-1 summarises some of the bubble velocity correlations without the void fraction parameter, 

available from the open literature. Performance evaluations of several of these models may be found 

in different past studies, for instance from Viana et al.[9], Jeyachandra et al. [11], Moreiras et al. [12], 

Lizarraga-Garcia et al. [13], and Livinus et al. [14]. Performance assessments of some drift velocity 

correlations with void fraction parameter can be found in Bhagwat and Ghajar[16]. 

Zuber and Findlay [17] confirmed the drift flux relationship provided in Equation (1) for vertical 

annular and slug flows. Franca and Lahey [18], using air–water experimental data, verified the use of 

the drift flux model for all flow patterns observed in horizontal gas–liquid flow. Danielson and Fan 

[19] showed that this relationship is valid for stratified, annular, slug and dispersed bubble flows in a 

large diameter, horizontal and high-pressure system. In order to extend the drift flux model to a high 

viscosity liquid, Choi et al. [20, 21] proposed the expression given in Equation (14) with fixed 

coefficients obtained from a regression analysis between the predicted liquid holdup and the measured 

liquid holdup. They validated their model, and found fair agreement against the experimental data of 

Gokcal[22, 10] that include various flow patterns such as stratified wavy, elongated bubble, slug, and 

annular flow. Unfortunately, proposing such fixed coefficients might affect the predictive strength of 

a generalised drift velocity model. Bhagwat and Ghajar[16]then proposed a more complex drift flux 

model applicable over a wide range of flow conditions (holdups and pipe inclinations for both 

downward and upward flows). Their drift velocity correlation was formulated as a function of pipe 

orientation, pipe diameter, fluid properties and void fraction. However, Tang et al. [15] reported 

numerous discontinuities embedded within the Bhagwat and Ghajar[16] model, thus making it 

ineligible for implementation in a fully coupled numerical system. Tang et al. [15]also formulated a 

drift velocity equation as a function of pipe orientation, pipe diameter, fluid properties and void 

fraction, with dimensionless “viscosity” number and Eötvös number. They reported that the horizontal 

section of their drift velocity equation was partly inspired by the work of Zukoski [6], Ben-Mansour et 

al. [23], and Jeyachandra et al. [11], and was the outcome of various in-house studies conducted by 

Schlumberger, which was confidential. Hence, detailed information regarding the exact derivation 

was missing in their publication. 
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This work therefore offers concise information on the developments of drift velocity models based on 

different approaches, including Artificial Neural Network. Firstly, the modified version of the Livinus 

et al.[14] generalised drift velocity correlation was considered, see Livinus [24], and Livinus and 

Verdin[25]. The predictive capabilities of the developed models were evaluated by comparing with 

results from experimental data and existing correlations by error analysis. 

2. MODIFIED VERSION OF THE LIVINUS ET AL.[14] MODEL 

Livinus et al.[14] pointed out that most of the non-complex existing drift velocity models have shown 

wide applicability limitations, and sometimes low predictive capabilities, either because they were 

derived from data with a narrow range of experimental parameters or because of their formulation. In 

their bid to address these shortcomings, they proposed a simplified generalised drift velocity 

correlation of the power law form. Calculation errors were however associated with the expressions 

given in their work, labelled hereafter Equations (A-17b) and (A-17c).Looking closely at those, 

Equation(A-17c)seems to suggest the same drift velocity value for both vertical and horizontal flows; 

this is contrary to existing theoretical and experimental results. The first term in Equation (A-17b) 

was indeed wrongly represented, therefore resulting in a calculation error whenever the buoyancy 

Reynolds number was greater than the Eötvös number.  

The modified formulation provided through Equations 2(a-f),is based on the fitting of the third-degree 

polynomial of the Livinus et al. [14] gathered dataset, considering the log-log relationship between 

the Froude number and a combination of the Eötvös number and the buoyancy Reynolds number. 

This was considered for matching the vertical and horizontal flow data and for having the least 

percentage error spread. 

𝐹𝑟𝐻 = 10−𝑚 (2a) 

𝑚 = (−0.02861𝑥3) + (0.5987𝑥2) + (−4.139𝑥) + 9.843 (2b) 

𝐹𝑟𝑉 = 10−𝑛 (2c) 

𝑛 = (−0.01386𝑥3) + (0.267𝑥2) + (−1.727𝑥) + 4.167 (2d) 

𝑥 = 𝐿𝑜𝑔10(𝑅𝐸𝑜) (2e) 

𝐹𝑟𝜃 = 𝐹𝑟𝐻𝑐𝑜𝑠𝜃 + 𝐹𝑟𝑉𝑠𝑖𝑛𝜃 (2f) 

Other curve fitting models evaluated include the power law model of the form, 𝑦 = 𝑎 ∗ 𝑥𝑏 + 𝑐, and 

the exponential law model with two terms of the form, 𝑦 = 𝑎 ∗ exp(𝑏 ∗ 𝑥) + 𝑐 ∗ exp⁡(𝑑 ∗ 𝑥). The 

curve fitting parameters for these two models and their R-squared values are presented in Tables1 and 

2, respectively. 

Table1. Variables for the two-term power law model(𝑦 = 𝑎 ∗ 𝑥𝑏 + 𝑐) 

Data 𝑎 𝑏 𝑐 R2 

0-2-degree 1044 -5.378 0.3433 0.905 

0 – 90-degree -16.38 0.06146 18.63 0.797 

90-degree -5.099 0.1927 7.568 0.8625 

Table2. Variables for the two-term exponential law model(𝑦 = 𝑎 ∗ 𝑒𝑥𝑝(𝑏 ∗ 𝑥) + 𝑐 ∗ 𝑒𝑥𝑝⁡(𝑑 ∗ 𝑥)) 

Data 𝑎 𝑏 𝑐 𝑑 R2 

0-2-degree 3.355E+04 -3 1.429 -0.1989 0.9137 

0 – 90-degree 4.484 -0.4922 0.01886 0.3109 0.8738 

90-degree 4.571 -0.4934 0.01619 0.3989 0.9373 

It is worth mentioning that there were no significant differences among the three major tested curve 

fitting models. The two-term exponential model happens to predict more of the gathered drift velocity 

data in the ±20% error bandwidth, as shown in the probability density function (PDF) plot in Figure 

1(a). However, the three-degree polynomial curve fitting model displays the least error spread. Figure 

1(b) shows the count of the number of the gathered data set with percentage error predictions between 

-100% and 1000%; it is about 10% of the gathered data set for the two-term exponential model, 4% 

for the power law model and about 1% for the three-degree polynomial model. 
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It should also be noted that poor predictions were obtained with the two-term exponential model for 

fluid flow conditions with both the buoyancy Reynolds numbers and the Eötvös numbers higher than 

200. 

The modified Livinus et al.[14]drift velocity correlation was evaluated and found to agree well, as 

shown in Figure 2,for fluid conditions in a wide range of viscosity, (0.544cP ~ 7120cP), and for 

upwardly inclined pipes between 0° and 90°. However, for very high viscous liquid flowing in a pipe 

and fluid conditions where both the Eötvös numbers and the buoyancy Reynolds numbers are less 

than 200, the generalised model did not perform well, as may be seen in Figure 2(b). 

 

Figure1. Performance comparisons for the three tested curve fitting models 

 

 

Figure2. Performance of the new drift velocity correlation on the gathered experimental dataset 
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Based on the above graphs, the need for developing and testing other methods for improving the drift 

velocity model formulation became apparent. A series of drift velocity correlations, especially for 

pipe and fluid conditions for both the Eötvös numbers and the buoyancy Reynolds numbers being less 

than 200was then considered. The application of Artificial Neural Network was also investigated for 

the drift velocity model formulation, in a bid to develop an improved generalised model. 

3. DEVELOPMENT OF DRIFT VELOCITY CORRELATIONS FOR EÖTVÖS AND BUOYANCY REYNOLDS 

NUMBERS LESS THAN 200 

The reported dataset from Livinus et al.[14] was used in this study. Having critically analysed this 

dataset, it appears that the Froude numbers display different curve patterns: a typical curve increases 

from zero-degree (horizontal flow), reaches a wide maximum for angles of inclination between 

30°and 60°, and then decreases to 90° (vertical flow). This is more apparent as the Froude number 

increases. Keeping in mind the different curve patterns and the gathered data, a parameter able to 

describe those curve patterns can be defined as the ratio of the pipe diameter and the surface tension 

to the liquid viscosity and its density, hereafter denoted ‘Livinus parameter’, 𝐿𝑝.  

⁡𝐿𝑝 =
𝜎𝐷

𝜌𝑙𝜇
 

(3) 

Figure 3 shows the gathered data for the different curve patterns under various range of the Livinus 

parameter 𝐿𝑝. As𝐿𝑝decreases, Fr also decreases, this is largely due to the influence of the fluid 

viscosity and pipe diameter.    

 

Figure3. Froude number vs Pipe inclination at various 𝐿𝑝 

The resulting series of drift velocity correlations could be formulated, based on the fitting of the 

trigonometric relationship of the Froude numbers under the various 𝐿𝑝 values.A general form could 

be established as: 

𝐹𝑟𝜃 = 𝐴𝑐𝑜𝑠(𝐵𝜃) + 𝐶𝑠𝑖𝑛(𝐵𝜃)       (4) 

Constants 𝐴, 𝐵 and 𝐶 for the various 𝐿𝑝 valueswith sufficient gathered data for fitting, are provided in 

Table 2, for pipe and fluid conditions where the Eötvös and buoyancy Reynolds numbers are less than 

200.The R-squared values range from 0.67 to 0.99. Figure 4 shows the curve fittings for the first 

four𝐿𝑝cases listed in Table 3. 
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Figure4. Curve fitting for the first four 𝐿𝑝 cases 

Table3. Fitting constants; 𝐴, 𝐵 and 𝐶 for various 𝐿𝑝 

𝐿𝑝 𝐴 𝐵 𝐶 

𝐿𝑝< 1.00E-07 1.04E-04 1.76E+00 1.63E-02 

1.00E-07<𝐿𝑝<5.00E-07 2.93E-02 1.36E+00 8.81E-02 

5.00E-07<𝐿𝑝< 1.00E-06 2.92E-02 1.61E+00 9.58E-02 

1.00E-06 <𝐿𝑝< 1.50E-06 1.46E-01 1.16E+00 2.09E-01 

1.50E-06 <𝐿𝑝< 2.00E-06 1.96E-01 1.26E+00 2.74E-01 

2.00E-06 <𝐿𝑝< 2.50E-06 2.72E-01 9.67E-01 3.10E-01 

2.50E-06 <𝐿𝑝< 2.70E-06 1.39E-03 1.55E+00 2.13E-01 

2.70E-06 <𝐿𝑝< 3.00E-06 2.51E-01 9.45E-01 2.49E-01 

4.00E-06 <𝐿𝑝< 4.25E-06 2.97E-01 9.34E-01 2.51E-01 

4.25E-06 <𝐿𝑝< 4.50E-06 3.22E-01 8.96E-01 2.42E-01 

4.50E-06 <𝐿𝑝< 6.00E-06 2.60E-01 1.10E+00 3.43E-01 

6.00E-06 <𝐿𝑝< 7.00E-06 3.30E-01 9.42E-01 2.80E-01 

7.00E-06 <𝐿𝑝< 8.00E-06 2.82E-01 1.07E+00 3.46E-01 

8.00E-06 <𝐿𝑝< 9.00E-06 3.29E-01 9.75E-01 3.03E-01 

9.00E-06 <𝐿𝑝< 1.00E-05 3.44E-01 9.81E-01 3.05E-01 

1.40E-06 <𝐿𝑝< 1.50E-05 1.11E-01 1.32E+00 3.46E-01 

4. APPLICATION OF ARTIFICIAL NEURAL NETWORK (ANN) TO MODEL THE DRIFT VELOCITY 

As pointed out by Brunton et al.[26], extensive efforts are needed to gain insights and mechanistic 

understanding, through analysis of observations and data from experiments, to develop closure 

models that effectively represent data in a compact form. These may be seen in the formulations of 

the modified Livinus et al.[14] models and the developed series of drift velocity correlations under 

various Livinus parameters. As an alternative to mechanistic and semi-analytical models, machine 

learning (ML) methodologies become attractive as they can be used to capture any underlying data 

correlation using nonparametric models, or so-called data-driven models. In the past three decades, 

Neural Networks have become of interest to fluid engineers, and supervised training algorithms, 

specifically back propagation algorithm, have been commonly applied (Amini and Mohaghegh, 

[27]).Recently, Nathaniel and Livinus [28] developed an ANN drift velocity model for all pipe 

inclination; the predictions were found to agree well with experimental data, for fluid conditions in a 

wide range of viscosity, and for upwardly inclined pipes between 0° and 90°. Koffi and Livinus [29] 

applied deep learning approach to model the drift velocity. Unfortunately, for very high viscous liquid 

flowing in a pipe and fluid conditions where both the Eötvös and buoyancy Reynolds numbers were 

less than 200, the model also did not perform well. For this reason, we have therefore attempted to 

apply the ANN to develop models for vertical flow, horizontal flow and inclined flow, separately. 

The basic idea of Artificial Neural Network is to approximate a function, 𝑓∗, between input vector, 𝑥, 

to output category, 𝑦, that is: 
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𝑦̂ = 𝑓∗(𝑥)                  (5) 

The mapping between input and output is given by; 

𝑦̂ = 𝑓∗(𝑥, 𝜃)                (6) 

where, 𝜃 consists of weight, 𝑤, and bias, 𝑏. 𝜃 is learnt by iterating over a given data. 

An Artificial Neural Network comprises at least three layers: input layer, hidden layer with neurons, 

and output layer. Each layer connects with other layers with the help of weights. The network 

performance is solely based on the adjustment of weights between these layers. Hidden layers 

assigned with transfer function are usually ‘log-sigmoidal’ or ‘tan-sigmoidal’. Output layer is 

assigned with ‘pure linear’ activation function (Elkatatny and Mahmoud, [30]). The above 

explanation is expressed mathematically as; 

𝑦̂ = 𝜎(𝑥𝑇𝑤 + 𝑏)                (7) 

where, 𝜎 is the transfer function, usually log-sigmoidal or tan-sigmoidal, and 𝑥𝑇 is the transpose of 

the input vector, 𝑥. 

Detailed information regarding the development of drift velocity models using Artificial Neural 

Networks for vertical, inclined and horizontal pipes is provided in the following. Once again, the 

dataset from Livinus et al.[14] was used. Pipe and fluid parameters used to develop the models are 

given in Table 4.These data were normalized using Equation 8 for the various pipe orientations. 

𝑋𝑛 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋 − 𝑋𝑚𝑎𝑥
 

     (8) 

were⁡𝑋𝑛⁡is the normalized value,𝑋 isthe original value,⁡𝑋𝑚𝑖𝑛 is the minimum of the original values, 

and 𝑋𝑚𝑎𝑥 is the maximum of the original values. 

Table4. Statistical analyses of the pipe and fluid parameters 

Pipe 

orientation 

Range of 

values 

Pipe ID 

(m) 

Liquid 

density 

Kg/m3 

Liquid 

viscosity 

cP 

Surface 

tension 

N/m 

Froude 

number 

Horizontal  Min 2.20E-02 8.60E+02 1.00E+00 1.51E-02 1.49E-02 

Max 1.52E-01 9.98E+02 1.14E+03 7.20E-02 5.05E-01 

Average 7.03E-02 9.02E+02 2.73E+02 3.42E-02 3.24E-01 

Vertical Min 4.00E-03 7.87E+02 5.44E-01 2.02E-02 5.90E-05 

Max 1.52E-01 1.51E+03 3.33E+04 8.70E-02 3.88E-01 

Average 4.15E-02 1.04E+03 1.19E+03 4.57E-02 2.31E-01 

Inclined Min 4.00E-03 7.87E+02 5.44E-01 2.02E-02 5.90E-05 

Max 1.52E-01 1.51E+03 3.33E+04 8.70E-02 3.88E-01 

Average 4.15E-02 1.04E+03 1.19E+03 4.57E-02 2.31E-01 

The MATLAB® Neural Network tool was used for the development of the drift velocity neural 

network models. The models for the horizontal and vertical pipes were developed using four input 

parameters: pipe ID, liquid density, liquid viscosity and surface tension. However, for inclined pipes, 

one additional input parameter was considered, the pipe inclination value. The Feed-Forward network 

was used with the Back Propagation algorithm. The network was trained using the Bayesian 

Regularization (BR) algorithm because of its ability to give good generalization for difficult, small or 

noisy datasets. Other algorithms have been tested, the Levenberg-Marquardt (LM) and the Scaled 

Conjugate Gradient (SCG), but the Bayesian Regularization algorithm provided the best results.  

The number of neurons to be used in the hidden layer had to be established. The most common 

approach for determining this value is through trial-and-error. Three to seven neurons were tested, the 

three-neuron case generated the best results, and was thus considered to develop the models. Note that 

for the inclined cases, the five-neuron procedure worked better.Figure 5 shows the network 

architecture. 
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Figure5. Neural Network Architecture 

Based on a70:5:25 partition, 70%of the data was used for training, 5% for validation and 25% for 

testing. Such partition was applied as the Bayesian Regularization only makes use of the training and 

testing data, ignoring the validation phase (the lowest percentage here) in order to avoid over fitting. 

4.1. Results of the Artificial Neural Networks for the Drift Velocity in Horizontal Pipes 

The normalized expressions for the data used for the development of the Neural Network model for 

horizontal pipes are given fromEquations9to 13: 

(𝐼𝐷𝑝)𝑛 ⁡⁡= ⁡7.669𝐼𝐷𝑝⁡– ⁡0.169 (9) 

(𝛾𝑙)𝑛 ⁡= ⁡0.007𝛾𝑙 ⁡– ⁡6.232 (10) 

(𝜇𝑙)𝑛 ⁡= ⁡0.001𝜇𝑙 ⁡– ⁡0.001 (11) 

(𝑇𝑠)𝑛 ⁡= ⁡17.575𝑇𝑠⁡– ⁡0.265 (12) 

(𝑁𝐹)𝑛 ⁡= ⁡2.042𝑁𝐹 ⁡– ⁡0.03 (13) 

where(𝐼𝐷𝑝)𝑛, (𝛾𝑙)𝑛, (𝜇𝑙)𝑛, (𝑇𝑠)𝑛and (𝑁𝐹)𝑛are the normalized values of Pipe ID, liquid density, 

liquid viscosity, surface tension, and Froude number, respectively. 

 

 
Figure6. Network regression plots for horizontal flow 
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Figure 6 shows the regression plots for the training and testing performance, as well as the overall 

performance of the developed model. The target in the plots represent the experimental Froude 

numbers, while the output denotes the predicted Froude numbers. With R-squared values of 0.96, 0.98 

and 0.95 for the training, testing and overall performance respectively, the model appears to perform 

well for predicting the observed Froude number in horizontal pipes. 

4.1.1. Artificial Neural Network Equation – Horizontal Pipe 

The weights (𝑤) and biases (𝑏) of the Neural Network model were utilized to derive the normalized 

value of the Froude number: 

(𝑁𝐹)𝑛 =∑𝑤2𝑖(𝑤1𝑖,1(𝐼𝐷𝑝)𝑛 +

3

𝑖=1

𝑤1𝑖,2(𝛾𝑙)𝑛 +𝑤1𝑖,3(𝜇𝑙)𝑛 +𝑤1𝑖,4(𝑇𝑠)𝑛 + 𝑏1𝑖) + 𝑏2 
 

(14) 

where⁡𝑖 denotes the index of each neuron in the hidden layer, 𝑤1𝑖 is the weight associated with input 

and hidden layers for each input parameter, 𝑏1𝑖 denotes the biases associated with the input and 

training layers, 𝑤2𝑖 is the weight associated with the hidden and output layers, and 𝑏2 is the bias 

associated with the hidden and output layers. All weights and biases considered here are summarized 

in Table 5. 

Table5. Weights and Biases of the developed Neural Network – horizontal pipe 

Neuron 

index 

(𝒘𝟏) (𝒘𝟐) (𝒃𝟏) (𝒃𝟐) 

(𝑰𝑫𝒑)𝒏 (𝜸𝒍)𝒏 (𝝁𝒍)𝒏 (𝑻𝒔)𝒏 

1 0.3699 -0.0862 -0.0251 0.1142 -0.3607 -0.0266 -0.2307 

 2 0.2038 -0.4180 0.2792 -0.1698 -0.5205 -0.1580 

3 -1.4818 0.2063 0.6478 -0.3029 -0.9897 -0.8412 

4.2. Results of the Artificial Neural Networks for the Drift Velocity in Vertical Pipes 

The normalized expressions for the data used for the development of the Neural Network model for 

vertical pipes are given by Equations15 through 19: 

(𝐼𝐷𝑝)𝑛 ⁡⁡=⁡= ⁡6.739𝐼𝐷𝑝⁡– ⁡0.027 (15) 

(𝛾𝑙)𝑛 ⁡= ⁡0.001𝛾𝑙⁡– ⁡1.089 (16) 

(𝜇𝑙)𝑛 ⁡= ⁡0.00003𝜇𝑙⁡– ⁡0.00002 (17) 

(𝑇𝑠)𝑛 ⁡= ⁡14.97𝑇𝑠⁡– ⁡0.302 (18) 

(𝑁𝐹)𝑛 ⁡= ⁡2.580𝑁𝐹 (19) 

Similarly, to horizontal pipes, the regression plot for the training and testing performance were 

plotted, along with the overall performance of the developed model, as can be seen in Figure 7. R-

squared values of 0.96, 0.95 and 0.96 for the training, testing and overall performance were obtained. 

This demonstrates that the developed model performs well for predicting experimental-based Froude 

numbers in vertical pipes. 



Closing Thoughts on the Proposition of Improving Drift Velocity Closure Relationship for Multiphase 

Flow Models 

 

International Journal of Petroleum and Petrochemical Engineering (IJPPE)                                   Page | 27 

 

 
Figure7. Network regression plots for vertical flow 

4.2.1. Artificial Neural Network Equation – Vertical Pipe 

An equation was extracted from the optimized ANN results to derive the normalized value of the 

Froude number for vertical pipes, and all corresponding weights and biases are summarised in Table 6 

(𝑁𝐹)𝑛 =∑𝑤2𝑖(𝑤1𝑖,1(𝐼𝐷𝑝)𝑛 +

3

𝑖=1

𝑤1𝑖,2(𝛾𝑙)𝑛 +𝑤1𝑖,3(𝜇𝑙)𝑛 +𝑤1𝑖,4(𝑇𝑠)𝑛 + 𝑏1𝑖) + 𝑏2 
 

(20) 

Table6. Weights and Biases of the developed Neural Network – vertical pipe 

Neuron 

index 

(𝒘𝟏) (𝒘𝟐) (𝒃𝟏) (𝒃𝟐) 

(𝑰𝑫𝒑)𝒏 (𝜸𝒍)𝒏 (𝝁𝒍)𝒏 (𝑻𝒔)𝒏    

1 0.0538 2.9201 -1.0710 1.7872 1.8778 0.3777 0.0347 

2 -0.0854 0.0469 -0.2582 2.0988 -1.9735 0.4510 

3 -2.6605 1.8051 3.3345 -1.1284 -1.0921 1.1931 

4.3. Results of the Artificial Neural Networks for Drift Velocity Development for Inclined Pipes 

The normalized expressions for the data used for the development of the Neural Network model for 

inclined pipes are given by Equations21 through 26: 

(𝐼𝐷𝑝)𝑛 ⁡⁡= ⁡6.739𝐼𝐷𝑝⁡– ⁡0.027 (21) 

(𝛾𝑙)𝑛 ⁡= ⁡⁡0.001𝛾𝑙⁡– ⁡1.089 (22) 

(𝜇𝑙)𝑛 ⁡= ⁡0.00003𝜇𝑙⁡– ⁡0.00002 (23) 

(𝑇𝑠)𝑛 ⁡= ⁡13.908𝑇𝑠⁡– ⁡0.21 (24) 

(𝑁𝐹)𝑛 ⁡= ⁡1.683𝑁𝐹 (25) 

(𝜃𝑝)𝑛 ⁡= ⁡0.011𝜃𝑝 (26) 
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with all expressions as defined previously, and (𝜃𝑝)𝑛 the normalized value of pipe inclination (angle). 

Figure 8 shows the regression plot for the training and testing performance, as well as the overall 

performance of the developed model. R-squared values of 0.97, 0.96 and 0.97 were obtained for the 

training, testing and overall performance, respectively. Once again, the approach worked well here for 

inclined pipelines. 

 

Figure8. Network regression plots for inclined flow 

4.3.1. Artificial Neural Network Equation – Inclined Pipe 

Finally, an equation was extracted from the optimized ANN results to derive the normalized value of 

the Froude number for inclined pipes. All corresponding weights and biases are summarised in Table 

7. As explained previously, a five-neurons procedure was best in the hidden layer when dealing with 

inclined pipes. 

(𝑁𝐹)𝑛 =∑𝑤2𝑖(𝑤1𝑖,1(𝐼𝐷𝑝)𝑛 + 𝑤1𝑖,2(𝜃𝑝)𝑛 +

5

𝑖=1

𝑤1𝑖,3(𝛾𝑙)𝑛 + 𝑤1𝑖,4(𝜇𝑙)𝑛 +𝑤1𝑖,5(𝑇𝑠)𝑛 + 𝑏1𝑖) + 𝑏2 
(27) 

Table7. Weights and Biases of the developed Neural Network – inclined pipe 

Neuron 

index 
(𝒘𝟏)  (𝒘𝟐) (𝒃𝟏) (𝒃𝟐) 

(𝑰𝑫𝒑)𝒏 (𝜽𝒑)𝒏 (𝜸𝒍)𝒏 (𝝁𝒍)𝒏 (𝑻𝒔)𝒏 

1 -0.1632 -0.1071 1.8405 8.5645 -1.2901 -1.7602 8.8275 -4.6168 

2 0.1493 -0.5997 -0.4591 -0.3565 0.1325 -2.2819 -1.2886 

3 -0.2708 0.3155 -5.4054 0.1941 2.3336 -0.6975 -0.3333 

4 -0.0147 -0.2625 0.2398 1.5162 -0.1782 5.3907 1.9822  

5 1.2383 0.3687 -0.6858 -2.9856 -0.0468 2.1767 -1.4281  
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5. COMPARATIVE ANALYSES OF THE PERFORMANCES OF SEVERAL DRIFT VELOCITY 

CORRELATIONS AGAINST THE NEWLY DEVELOPED MODELS 

The performance of the novel models, the modified Livinus et al.[14] model, the series of drift 

velocity correlations with Eötvös and buoyancy Reynolds numbers lower than 200, and the ANN 

models, were compared with the performances of some of the correlations listed in Table A-1, in their 

respective ranges of validity. As may be seen from the probability density function of the percentage 

error plots in Figures9 to 11, the modified Livinus et al and the ANN models, overall performed better 

than the other correlations under their respective range of validity.  

For the vertical flow models assessment, the modified Livinus et al. and the ANN models performed 

significantly better than the Wallis [31] model, see Figure 9(a).  Looking at Figure 9(b), the Tung and 

Parlange [32] model appears to have better-matched results than the three-degree polynomial model 

from Livinus et al. and the ANN model. However, when looking closely, the overall performance of 

both the three-degree polynomial and the ANN models are actually similar to that of the Tung and 

Parlange[32] model as all three models have over 85% of the predicted data within the ±20% error 

range. 

 

Figure9. Comparison of the new models (Livinus et al. 2018, and ANN), with other models from the literature - 

vertical pipe flow 

For the horizontal flow models comparisons, the modified Livinus et al. model and the ANN model 

outperform the Weber [33] model, see Figure 10(a). The recently developed Pablo Valdés et al.[34] 

model as presented in Equation (A-18) with an exponential term, is an improvement to the horizontal 

flow model of Moreiras [12];its performance is similar to both the three-degree polynomial and ANN 

models, see Figure 10(b).  

 
Figure10. Comparison of the new models (Livinus et al. [14], and ANN) with other models - horizontal flow 
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For models under their validity range for all pipe inclinations and liquid viscosities, the modified 

Livinus et al.[14] and the ANN models appeared superior when compared to predicted results with the 

Weber [7], Jeyachandra et al.[11], and Moreiras [12] models, see Figure 11(a, b, and c). For a liquid 

viscosity of 1cP and for all pipe inclinations within their range of validity, the ANN model showed 

the best performance. The Bendiksen [35] model seemed to have a larger set of predicted data within 

the ±20% error bandwidth compared to the modified Livinus et al.[14]model, see Figure 11(d), but 

overall the percentage error spread is wider than that of the new models. 

For very high viscous liquid flowing in a pipe and fluid conditions where both the Eötvös numbers 

and the buoyancy Reynolds numbers are less than 200, both the Livinus et al. model and the ANN 

model poorly predicted the observed Froude numbers, as can be seen in Figure 12. 

 

 

Figure11. Comparison of the new models (Livinus et al. [14], and ANN)with other models under vertical, 

horizontal and inclined flows. 
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Figure12. Comparison of the new models (Livinus et al. [14], and ANN) under vertical, horizontal and inclined 

flows, with Eötvös and buoyancy Reynolds numbers lower than 200 

6. CONCLUSION 

Improved drift velocity correlations for the modelling of multiphase flow in pipelines have been 

presented. The modified Livinus et al. [14] model on drift velocity predictions was presented first. 

This model is based on the fitting of a third-degree polynomial, considering the log-log relationship 

between the Froude number and a combination of the Eötvös and buoyancy Reynolds numbers. 

Predicted results obtained with this newdrift velocity correlation matched well data for fluid 

conditions within a wide range of viscosity (0.544cP ~ 7120cP), and for upwardly inclined pipes 

between 0o and 90o.  

However, for very high viscous liquid, in a pipe and fluid conditions where both the Eötvös and the 

buoyancy Reynolds numbers are less than 200, the generalised model performed poorly. A series of 

drift velocity correlations have therefore successfully been developed, based on the fitting of a 

trigonometric relationship of the Froude numbers under various (Livinus)⁡𝐿𝑝 values. 

An ANN approach was also successfully applied for the development of drift velocity models for 

vertical, horizontal and inclined flows. Comparative analyses of the new developed models, i.e. the 

modified Livinus et al. [14] and ANN models were performed against other models extracted from the 

literature and tested under their respective range of validity. It appeared clearly that the modified 

Livinus et al.[14] model and the series of drift velocity models under various 𝐿𝑝 parameters 

outperformed existing correlations. These new models could therefore improve existing multiphase 

flow pipeline simulators, and be applied for a better design and improved operations of both viscous 

and less viscous oil production, processing and transportation. 
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APPENDIX 

The Froude number,𝐹𝑟, is the ratio of the bubble inertia to the gravitational forces;  

𝐹𝑟 = 𝑣𝑑/[(𝑔𝐷)(1 −
𝜌𝑔

𝜌𝑙⁄ )]1/2 (A-1) 

The Eötvös number,⁡𝐸𝑜, represents the ratio of the gravitational forces to the interfacial forces; 

⁡𝐸𝑜 =
(𝜌𝑙 − 𝜌𝑔)𝑔𝐷

2

𝜎
 

(A-2) 

The buoyancy Reynolds number,𝑅, is the ratio of the gravitational forces to the viscous forces; 

𝑅 =
(𝐷3𝑔(𝜌𝑙 − 𝜌𝑔)𝜌𝑙)

0.5

𝜇𝑙
 

(A-3) 

TableA-1. Summary of some drift velocity correlations in liquid in pipes 

Authors Correlation/model Applicability 

Range 

Equation 

No. 

Dumitrescu [36] 𝑣𝑑
𝑣 = 0.351√𝑔𝐷 90°, 1cP (A-4) 

Davies and Taylor [37] 𝑣𝑑
𝑣 = 0.328√𝑔𝐷 90°, 1cP (A-5) 

Benjamin [38] 𝑣𝑑
ℎ = 0.542√𝑔𝐷 0°, 1cP (A-6) 

Brown [39] 

𝑣𝑑
𝑣 = 0.35√𝑔𝐷√1 − 2(

√1 + N⁡𝐷 − 1

N⁡𝐷
) 

 

The applicability limits of the above equation were 

90° (A-6a) 
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reported as: 

 

N = (14.5
𝜌𝑙
2𝑔

𝜇2
)

1/3

 

 

 (A-6b) 

Surface tension:
ρlgD

2

4σ
(1 − 2 (

√1+N⁡D−1

N⁡D
))

2

> 5.0 
 (A-6c) 

 

Viscosity: N⁡𝐷> 60.  (A-6d) 

 

 

Wallis [31] 

𝑣𝑑
𝑣 = k [

𝐷𝑔(𝜌𝑙 − 𝜌𝑔)

𝜌𝑙
]

0.5

 

 

where 

90° 

 

 

 

(A-7a) 

k = 0.345(1 − e−0.01R/0.345)(1 − e(3.37−Eo)/m)  (A-7b) 

 

R =
[𝐷3𝑔(𝜌𝑙 − 𝜌𝑔)𝜌𝑙]

0.5

𝜇
 

  

(A-7c) 

 

{
m = 10,⁡⁡⁡⁡⁡⁡⁡⁡⁡R > 250

m = 69R−0.35⁡⁡⁡⁡18 < 𝑅 < 250
m = 25⁡⁡⁡⁡⁡⁡⁡R < 18

 
  

(A-7d) 

 

 

 

 

Tung and Parlange[32] 

𝐹𝑟 =
𝑣𝑑
𝑣

√𝑔𝐷
= (0.136 − 0.944

σ

𝜌𝑔𝐷2
)
0.5

 
90° (A-8) 

 

Weber [33] 
𝑣𝑑
ℎ

√𝑔𝐷
= 0.54 − 1.76Eo−0.56 

 

where  

0° (A-9a) 

Eo = 𝜌𝐷2𝑔/σ  (A-9b) 

 

 

Bendiksen [35] 
𝑣𝑑 = 𝑣𝑑

ℎ𝑐𝑜𝑠𝜃 + 𝑣𝑑
𝑣𝑠𝑖𝑛𝜃 

 

 

where 

0° – 90°, 1cP (A-10a) 

𝑣𝑑
ℎ = 0.542√𝑔𝐷  (A-10b) 

 

𝑣𝑑
𝑣 = 0.351√𝑔𝐷  (A-10c) 

 

Weber et al. [7] 

 

𝑣𝑑 = 𝑣𝑑
ℎ𝑐𝑜𝑠𝜃 + 𝑣𝑑

𝑣𝑠𝑖𝑛𝜃

+ 1.37(∆𝑣𝑑)
2/3𝑠𝑖𝑛(𝜃)(1

− 𝑠𝑖𝑛(𝜃)) 
 

when 

 

0° – 90° 

 

(A-11a) 

∆𝑣𝑑 = 𝑣𝑑
𝑣 − 𝑣𝑑

ℎ > 0  (A-11b) 

𝑣𝑑 = 𝑣𝑑
ℎ𝑐𝑜𝑠𝜃 + 𝑣𝑑

𝑣𝑠𝑖𝑛𝜃, when ∆𝑣𝑑 ≤ 0  (A-11c) 

 

Hasan and Kabir [40] 
𝑣𝑑 = 𝑣𝑑

𝑣√𝑠𝑖𝑛𝜃(1 + 𝑐𝑜𝑠𝜃)1.2 

 

30°– 90°, 1cP (A-12a) 

𝑣𝑑
𝑣 = 0.351√𝑔𝐷  (A-12b) 

 

Gokcal et al. [10] 
𝑣𝑑 = 𝑣𝑑

𝑣(𝑠𝑖𝑛𝜃)0.7 + 𝑣𝑑
ℎ(𝑐𝑜𝑠𝜃)1.5 

 

where 

0° – 90° (A-13a) 

 

𝑣𝑑
𝑣 = −

4

3

𝜇

𝜌. 𝑟
+ √

4

9
𝑔𝑟 +

16

9

𝜇2

(𝜌. 𝑟)2
 

 (A-13b) 

 𝑣𝑑
ℎ = 𝑉2(1 − 𝛽)  (A-13c) 
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β =

γ − 0.5sin2γ

3.142
 

 

 (A-13d) 

 V2 = √2𝑔[𝑟(1 − 𝑐𝑜𝑠𝛾) − ∆]  (A-13e) 

 

 ∆

=
1 − β

β
(𝑟(1 − cosγ)

− [
𝑟[1 − (1 − 𝛽)𝑐𝑜𝑠𝛾] + 0.2122𝑠𝑖𝑛𝛾

1 − β
2 ]) 2.2 

 (A-13f) 

 

 

 

Jeyachandra et al. [11] 
𝐹𝑟𝜃 = 𝐹𝑟ℎ𝑐𝑜𝑠𝜃 + 𝐹𝑟𝑣𝑠𝑖𝑛𝜃 0°– 90° (A-14a) 

𝐹𝑟ℎ = 0.53e−13.7Nμ
0.46Eo

−0.1
  (A-14b) 

𝐹𝑟𝑣 = −
8

3
𝑁𝑣𝑖𝑠 +√

2

9

𝜌𝐿
𝜌𝐿 − 𝜌𝐺

+
64

9
𝑁𝑣𝑖𝑠
2  

 

 (A-14c) 

 

 𝑁𝑣𝑖𝑠 = 𝜇(𝑔𝐷3(𝜌𝑙 − 𝜌𝑔)𝜌𝑙)
−0.5

  (A-14d) 

 

Choi et al. [20, 21] 

 

𝑣𝑑 = 0.0246𝑐𝑜𝑠(𝜃) + 1.606 (
𝑔𝜎∆𝜌

𝜌𝐿
2
)
1/4

sin⁡(𝜃) 
 

0° – 90° 

(A-15) 

 

Moreiras et al. [12] 
𝐹𝑟𝐻 = 0.54 −

𝑁𝑣𝑖𝑠
1.886 + 0.01443𝑁𝑣𝑖𝑠

 

 

0° – 90°, 𝐷 ≥ 

0.0373m 

(A-16a) 

𝐹𝑟𝑉 = −
8

3
𝑁𝑣𝑖𝑠 +√

2

9

𝜌𝐿
𝜌𝐿 − 𝜌𝐺

+
64

9
𝑁𝑣𝑖𝑠
2

− (
√2

3
− 0.35)√

𝜌𝐿
𝜌𝐿 − 𝜌𝐺

 

 

 (A-16b) 

𝐹𝑟 = ⁡𝐹𝑟𝐻𝑐𝑜𝑠(𝜃)
1.2391 + 𝐹𝑟𝑉𝑠𝑖𝑛(𝜃)

1.2315 + 𝑄  (A-16c) 

Q = 0, if𝐹𝑟𝑉 − 𝐹𝑟𝐻 < 0  (A-16d) 

Otherwise  

𝑄 = 2.1589(𝐹𝑟𝑉 − 𝐹𝑟𝐻)
0.70412𝑠𝑖𝑛𝜃(1 − 𝑠𝑖𝑛𝜃) 

  

(A-16e) 

 

Livinus et al. [14] 

 

𝐹𝑟𝑙 = 10−𝑚 

 

𝑚 = 7.928𝐸 − 07 (− 𝑙𝑜𝑔10
𝑅

𝐸𝑜
)
7.443

+ 0.3276 

 

0° – 90°,  𝜇𝑙<  

7120cP 

 

(A-17a) 

 

 

(A-17b) 

 𝐹𝑟𝑙
𝜃 = 𝐹𝑟𝑙(𝑐𝑜𝑠𝜃 + 𝑠𝑖𝑛𝜃)  (A-17c) 

 

Pablo Valdés et al. [34] 
𝐹𝑟𝐻 = 0.76419 −

𝑁𝑣𝑖𝑠
0.02418 + 2.15042𝑁𝑣𝑖𝑠
− (0.28879𝑒𝑥𝑝(𝐸𝑜−0.50932)) 

 

 

0° 

(A-18) 
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