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1. INTRODUCTION 

Today, mankind has realized that his existence depends on the preservation of the environment and 

animals that the most important of which are water resources such as rivers and oceans. Therefore, we 

constantly need to ensure their protection. One of the best possible ways to observe the underwater 

world is through robotic fish. So far, many researchers have been conducted on how tooptimize the 

function of the robotic fish.  In this project, only the mechanism of the fish body movements is 

considered. In fish swimming, there are mainly two types of propulsion, i.e., the Body and/or Caudal 

Fin (BCF) propulsion [1,2] and the Medium and/or Paired Fin (MPF) propulsion [3,4].Most of the fast 

swimmers adopt BCF, such as sailfish, tuna, pike, etc. In fact, around 85 % of fish species swim in 

BCF form. Examples for MPF swimmers are manta ray and box fish. In robot fish development, high 

speed and high efficiency are the main pursuits. As a result, most of existing robot fish adopts BCF as 

the way to generate thrust. 

In general, the flapping motion of the robotic fish which is made of BCF mechanism can be divided 

into 3 categories 1. Multi-linked structure [5,6] 2. Full-bodies flexible robotic fish [7,8] 3. 

Manufactured robotic fish from SMA and PZT materials [9,10]. In the first category, the control 

mechanism of the fish tail movement is so complex and costly but its maneuverability is high. In the 

second category, wind and water powered actuators were used to manufacture the robotic fish and the 

structure of the fish body is complex and costly and there is no control over the swimming of the fish. 

In third category, the thrust force is low but the mechanism of the structure and control is so simple and 

low cost. In this project, the aim is manufacturing a low cost robotic fish with a simple control 

mechanism that is able to maneuver properly and possesses an acceptable thrust force. 
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According to open literature, most of existing works on fish robot are focused on modeling and 

simulation. In the present work a fish robot has been designed and fabricated. Several experimental 

tests and studies have been developed and performed to show the performance and functionality of the 

proposed system. 

2. DESIGNE 

The robotic fish consists of two major functional components. These are: 

The fish’s soft tail for forward propulsion, 

Actuator and control board for the tail in the waterproof unit (fish’s body). 

2.1. Fish Tail 

Based on the results previously obtained using test models, we believe that the flexibility of the caudal 

fin is an important factor for improving the propulsive performance of robotic fish [10]. For this 

reason, the robot is equipped with a caudal fin made of a flexible material. 

In order to optimize the geometry of the flexible tail, the width was copied from the geometry of a 

real fish, which was proposed by Alvarado & Toumi, 2006 that shows in figure 1. 

 

Figure1. Geometries of tails [11] 

As shown in figure 2, the design of the first section of the robot fish tail was based on the following 

geometric shape and the second section of the robot fish tail was added to the first section in order to 

apply force and create moment. To do so, a servomotor and a cable connected to point O were used to 

create moment in tail and the pressure of water in the opposite direction of moment to the first section 

of the fish tail can create a wave like movement in the tail. Using this simple mechanism, we were 

able to create vortex in water and copy the mechanism of a real fish movements. Since the ratio of the 

first section curve is smaller than the second section, the dynamic analysis bending of the first tail in 

water is possible through Euler-Bernoulli beam theory [12] as 

2 2 2

2 2 2
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                                                                                            (1)

 

where 0 < x < L and L is the length of the tail; ρ is the density of the material of the tail; A(x) is the 
area of cross-section of the tail; E is Young’s modulus; and I(x) is the moment of inertia of the area of 
the cross-section at x about the bending axis. EI(x) is the bending stiffness of the beam. 

 

Figure2. Euler-Bernoulli beam theory 
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Figure3. Caudal fin design 

2.2. Actuator Selection 

The pressure of water in the opposite direction of moment to the first section of the fish tail can create 

a wave-like movement in the tail. Using this simple mechanism, we are able to create vortex in water 

and copy the mechanism of a real fish movements. Since the ratio of the first section curve is smaller 

than the second section, the dynamic analysis of the tail is possible through Bernoulli’s law. 

In past iterations of BCF propulsion mechanism, flexible tail was used with complicated motion 

design, but in this approach with a simple mechanism using cables and choosing the fish tail from an 

elastic material, the lateral movement for the tail with suitable force and exceptional speed was 

created. 

2.3. The Control System Architecture 

Microcontroller unit(MCU) sends Pulse-Width-Modulation (PWM) signal to the motor driver to 

control the tail motor’s speed, and thus the ossillatory frequency of the tail is control by duty ratio of 

the PWM signal. 

3. FABRICATION 

3.1. Material Selection 

To choose the right material for the fish tail, several factors are taken into consideration. Firstly, the 

material needs to be flexible to be able to spring back to the first position after bending so that it can 

create a wave-like movement of the fish tail while swimming. Secondly, the tail needs to be stiff 

enough to push the water and not too stiff so that water can have no effect on it. So for this reason 

High Density Polyethylene (HDPE) sheet with the thickness of 1 mm was used for the tail. 

3.2. Electrical Design 

For the actuation of the tail, a servomotor was selected. Since servos are fully self-contained, the 

velocity and angle control loops are very easy to implement, while prices remain very affordable. 

Servomotors are a conventional and proven technology, and many control platforms currently exist 

for their implementation. 

To create a control signal for servomotor movement, a ATMEGA32 controller with timer of one 

second was used. The timer count Additive from 0 to the specific number and then downturn to 0 

again. One may note that the system clock and clock timer speed are two important parameters. 

3.3. Body Construction and Sealing 

The head of the robot fish has been designed using solidwork and made by plastic injection 

technology. 

In order to manufacture the fish tail, a sheet of HDPE (High Density Polyethylene) with the thickness 

of 1mm was provided. Then, the pattern of a fish tail was printed and cut out of HDPE. After cutting 

the tail of the fish a metal fasteners were installed 10cm far from the beginning of the tail.  

All the electrical equipment (including the control board, radio transmitter, servo motor and battery) 

were installed on a 22x9x0.2 aluminum plate. A disk with the radius of 11 cm was placed between the 

head and the tail of the robotic fish so that it can function as a support for the tail and the aluminum 

plate and also function as a sealing lid for the body of the fish. Two holes with the distance of 3cm 

from the center of the disk and 0.01 diameters were drilled so that the cables can pass through them. 

The respective cables are connected to the pulley installed on the servo and the tail.The tail and the 

aluminum plate were clamped to each side of the disk using bolts and knots. 

https://en.wikipedia.org/wiki/Microcontroller_unit
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Figure4. connecting the tail to the disk 

 

Figure5. The Mechanism of robotic fish actuation andmechanical parts assembly 

A plastic cover is used to make the equipment waterproof. This plastic cover (with aerodynamic 

shape) was chosen and for balancing, Pectoral fins were designed based on a real fish and fabricated 

with 0.2cm aluminum plate and fixed on the head of the robotic fish 

4. EXPERIMENTAL RESULTS 

Given the fact that this robotic fish is designed for underwater surveillance, the radius within which 

the fish swims is of great importance and the less the radius the more efficient the robotic fish 

functions. The extent to which the fish tail bends, determines the radius of movement and the 

mechanism of the movement of the robotic fish is designed in a way which is capable of making a U-

turn within the radius of 35 centimeters (Table 2). Compare to flexible tailed robotic fish ([7],[8],[9]), 

the mechanism to control the bending of the robotic fish tail is more efficient in terms of 

maneuverability. 

4.1. Effect of Changed Frequency of Flapping Motion 

The robotic fish was tested for frequencies from 0.5HZ to 2HZ and fixed amplitude of 7.5cm. the 

results is shown in table 1. As it can be seen in table 1, the speed increase until f=1.25HZ but after 

that, the servomotor cannot handle the amplitude and it cause reduction in both speed and amplitude. 

 

Figure6. Fabricated Robotic Fish 

Table1. Forward swimming speed and tail's displacement at various frequencies and A=7.5cm 

tail Frequency of actuation (HZ) Forward Swimming speed (cm/s) 

0.5 12 

0.75 14.8 

1 18.1 

1.25 18.8 

1.5 18 
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4.2. Change Offset 

Changing the offset of the tail actuation, resulted in the robotic fish turning. The turning direction of 

the robot is opposite to the changing offset direction. Results of different offsets are presented in table 3. 

Table2. Turning performance of the robotic fish with different offsets af F=0.5HZ 

Amplitude (cm) Change offset (degrees) Circle Trajectory radius(m) Speed of turning swimming (rad/s) 

7.5 2 7.5 
 6 3.40 

13 1.90 

21 0.60 

20.1 29 0.35 
 

4.3. Power Consumption Calculation 

The supply voltage of the control board was set at 5 Volt and the outputs of the servomotor are: 

Torque0.255N.m, Speed6.98rad/s, Power1.78w. Battery Ni-Cd, Capacity =700mAh  

Based on specifications of servomotor and the battery, the servo can operate up to 170minutes. 

4.4. Added Load at the Center of Gravity 

To test the capability of the robot in carrying additional equipment (camera, GPS, etc.) a different 

load was attached to the robot’s center of gravity. With f=0.5Hz and A=7.5cm, the forward velocity 

reduced as shown in table 4. 

Table3. Forward Swimming Speed with Additional Load 

Amplitude (cm) Load (gram) Forward Swimming speed (cm/s) 

7.5 

100 12 

500 11 

900 9.8 

1300 9 

1700 7 

2100 5.8 

2500 4.5 

2980 Sink 

Figure7.  Shows the rate of reduction of swimming speed by adding load to the center of mass of the 

robot. As it shown in graph 1, each kilogram causes, the reduction in speed by 15 percent. 

5. NUMERICAL EXAMPLE 

The weight of the robot is 1kg and its length is 61cm. In this novel design, the tail was so flexible that 

it can be as similar as possible to the shape of a real fish’s body. The tail actuation was produced by 

using a servomotor connected to the tail through cable strings. The robotic fish uses a 40 KHz radio 

transmitter to control its forward swimming and steering. The turning movement is created by 

implying offset angle to the tail propulsion. This Robot has the capability to carry a maximum of 

2.98kg weight for extra accessories. The robotic fish was tested with different actuation frequencies 

and amplitudes. The maximum speed at f=1.25HZ and A=7.5cm was v=0.188m/s. 

6. COMPARING SWIMMING SPEED 

We compared our model with three other robotic fishes with flexible tail from the literature. The 

results of this comparison is shown in table 5. (Other samples to compare are all submerge) 

Table4. comparing swimming speed 

Robotic fish Forward Swimming speed(BL/s) Forward Swimming speed(cm/s) Total length (cm) 

[7] 0.15 10 66 

[8] 0.44 15 33.9 

[9] 0.1 3 30 

Float 0.308 18.8 61 

Submerge 0.1 5.8 61 
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6.1. Effect of  Changed Amplitude 

The robotic fish was tested for the displacement of the tip of the tail from 8cm to 18cm and fixed 

frequency of 1Hz. The results is shown in table 2. As it can be seen in the table 2, the speed increases 

by increasing the amplitude. 

Table5. Forward swimming speed at various tail's displacement and F=1Hz 

Amplitude(cm) Forward Swimming Speed(cm/s) 

4 11 

5.5 13.5 

7.5 18.1 

9 18.5 

Lighthillproposed that BCF flapping can be described by the traveling wave model below: 

  2

1 2

2
, ( )sin( )y x t c x c x x t





                                                                                                    (2) 

Where y and x  are sideward and forward displacements respectively, t is the time, 1c and 2c  are the 

linear and quadratic wave amplitudes, λ is the body wave length and ω is the wave frequency. 

The type of swimming method of the robotic fish is based on BCF method, so the propulsive wave 

curve can be described by equation (2). 

7. 2D HYDRODYNAMIC SIMULATION MODEL 

7.1. Dynamic Analysis of the Surrounding Fluid 

The 2D geometry and the tetrahedronal mesh of the robot fish is generated by GAMBIT. Figure 8 

shows the top view of the meshing of the robot fish. In the first step of the design,the water flow and 

the dynamic analysis of the surrounding water is simulated by CFD (computational Fluid Dynamic). 

In the dynamic analysis of the water flow surrounding the fish robot, the speed of water flow was 

adjusted 14m/s and the robotic fish was fixed and the pressure, velocity and vorticity (Fig. 9,10,11) 

countors were analyzed. Given the smooth flow around the robotic fish and where the vortex is 

formed, it can be concluded that the geometrical shape of the robotic fish is efficient for swimming. 

 

Figure8. The robot fish mesh 

 

Figure9. The pressure countors 
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Figure10. The velocity countors 

 

Figure11. The vortices countors 

7.2. Defination of the Swimming Movement of the Robot Fish 

At this stage, in ANSYS fluent the alternative movement of the fish robot was defined according to 

Eq.(2) where 1c =0.03, 2c =0.07, k=
2


=0.35,  =2 using UDF(USE-defined distribution) and also 

the swimming of the robotic fish was simulated using dynamic mesh. The swinging period of the 

oscillating movement of the fish tail in the simulations equals 1s. distribution of pressure surrounding 

the fish is shown in figure 12. These figures illustrate that low energy is needed to move the tail of the 

robotic fish. 

7.3. Pressure Distribution 

At t=0.25s (Fig.12(a)) the tail of the fish start swinging from the extreme right side to the left the 

positive pressure is generated on the right side of the tail and it has a wilder distribution than the 

negative pressure on the left side. The focus of the positive pressure is mostly near the tip of the tail 

that generate trust along left-forward. The generated pressures are due to the pushed back water by the 

tail. Also, since the amplitude of the tail movement reduces from tip to the end. Therefore, the amount 

of positive pressure increases from the end of the tail to the tip and as a result the vortex is generated 

near the tip of the tail and a big amount of water is pushed towards the right side of the tail.  

At t=0.75s(Fig.12(b)) the whole process is reversed. 

 

a. reaching the extreme right rotation position (t = 0.25 s) b. reaching the extreme left rotation position (t = 0.75 s) 

Figure12. The pressure distribution around the robot fish. 
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7.4. Velocity 

The velocity was analyzed at the same moment that the pressure was analyzed. The velocity 

countorare shown in figure13. 

At t=0.25s(Fig.13(a)) the tail of the robotic fish is swinging from right to left and the vortex shads 

from the tip to the end counterclockwise that causes the generation of pressure from right to left. 

Therefore, the generated pressure contributes to the movement of the tail. 

At t=0.75s(Fig.13(b)) the whole process is reversed. 

 

a. tail waving to the left (t=0.25s)            b. tail waving to the right (t=0.75s) 

Figure13. Velocity distribution 

7.5. Force 

The frequency of lateral motion of robotic tail in ANSYS is adjusted to 1 hertz and the drag and lift 

forces produced by the fish tail are analyzed (Fig.14). 

Diagram A illustrates the peaks of lift coefficient in a full cycle of tail movement. 

Diagram B shows drag coefficient in a full cycle of tail movement which is almost zero. 

 

a. drag                                                                           b. lift 

Figure14. Calculated variations of drag and lift coefficients with movement of the tail. 

8. CONCLUSION 

A biomimetic robotic fish was designed and fabricated. The model was based on the body of the 

golden Trout that is categorized in carangiform swimmers. The swimming of the robotic fish was 

evaluated using CFD, the results of which played an important role to optimize the performance over 

the course of the design. based on the obtained results, the formation of the vortex and its effect on the 

lateral movement of the tail and the way it pushes the water that leads to the thrust, were explained. 

This robot was developed a simple and low cost design with an acceptable efficiency compared to the 

robots mentioned in the literature. Also the velocity and maneuverability of the fish while making a 

U-turn, was compared to the flexible tail ones and the result was successful.  

The main application for this robotic fish is underwater surveillance and condition monitoring.  

For this, the robot was equipped with a GoPro camera with remote control and wireless transmitting 

signal. The camera was activated and start recording video and capturing images when the robot 

reached the desired location and the output was observed trough the receiving device. The detail of 

this work and case studies would be discussed with details in the future paper. 

For the future work, it is proposed to design an aerodynamic body to get better efficiency and speed 

also optimizing the tail thickness. In addition, adding the ability to this robot to dive and rise would be 
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a fabulous idea. Also installing sensors like sonar, GPS and image processing unit (IPU) can be the 

next step to improve this model. Also optimizing the speed of tail’s lateral movement can improve the 

swimming speed. 
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