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1. INTRODUCTION 

Nitrogen (N) is the most important plant nutrient determining the crop production. N is the most limiting 

nutrient required for food productivity worldwide (Giller et al., 2004).Over the past four decades, the 

doubling of global agricultural food production has been reached in part with a seven fold increase in 

the use of N fertilizers, where approximately 90-100 million metric tons are used for agricultural 

production (London et al., 2005). Global population growth has led to a significant increase in demand 

of cereal crops and other agriculture products. World population growth is expected to reach 8 billion 

people by 2025 further increasing the demand for food and greater efficiency in productivity. However, 

a great challenge will be to do this in an environmentally sustainable manner. One direction which will 

have an influence is the development of novel plant genotypes which have a greater capacity to produce 

harvestable yields using less external inputs such as nitrogen fertilizers. This genotypes should have the 

capacity to accumulate and or assimilate N more efficiently than that of previously selected crops while 

still maintaining the required harvested production levels demand of farmers and consumers (Hirel et 

al.,2007). 

Nitrogen can only be used by plants in its reduced form. Unfortunately, the majority of N in the 

environment is in the form of di-nitrogen (N2) which comprises~78%v/v of the air on the planet. 

Available forms of N (NH4
+

 &NO3
-) can occur through the activity of lighting, biological nitrogen 

fixation and via the energy intensive Haber-Bosch process. Plants such as legumes can form an effective 

N2-fixing symbiosis with soil bacteria, where they obtain the necessary levels of N from the atmosphere 

to adequately balance the demands required for growth and successful seed production. However in 

non-legume crops, N must be acquired in a reduced form where demand can vary widely depending on 
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the targeted yield and final protein content of the harvested product. Furthermore, differences in plant 

genotypes, environmental interactions and management systems will influence the supply and demand 

by the plant for N (Angus et al., 2001). 

1.1. Nitrogen Use Efficiency 

Nitrogen use efficiency (NUE) of a crop plant refers to the relative balance between the amount of 

fertilizer taken up and then used by the crop versus the amount of fertilizer supplied directly or indirectly 

(Nielsen et al., 2006). In other words, NUE looks at fertilizer input recovery in a production system to 

classify which plants do this better or worse when compared equally based on production (yield). NUE 

is defined by many authors in the context of crop production and the literature contains a number of 

different definitions depending on whether authors are dealing with agronomic, genetic, or 

physiological studies (Good et al., 2004; Fageria et al., 2008). According to Moll et al. (1982) N uptake 

efficiency (NupE) is the primary component determining NUE when soil N supply increases. This is 

explained by N uptake exceeding the critical value of N content in crop dry matter (Lawlor et al., 2001; 

Lemaire and Millard, 1999). On the other hand, Ortiz-Monasterio et al. (1997) reported that N uptake 

is also an important component of NUE under low condition. Both (Ortiz-Monasterio et al., 1997 and 

Le Gouis et al., 2000) stated that NupE in wheat accounts for most of the variation in NUE at low N 

availability. Ortiz-Monasterio et al. (1997) further defined NupE to include harvest index (HI) and 

biomass production efficiency (BPE) affirming that HI is best associated with NupE. Reductions in 

NUE as N supply increases could result from reductions in any of the components, including NupE, 

NutE and N retention efficiency (NRE). Different studies on wheat and perennial grasses have shown 

various limitations in each of these components (Huggins and Pan, 2003; Jiang et al., 2000; Ortiz-

Monasterio et al., 1997). For example, Ortiz-Monasterio et al. (1997) found that in all wheat varieties 

evaluated, both NupE and NutE were reduced at higher N supplies, causing an overall reduction in 

NUE. Morris and Paulsen (1985) and Cox et al. (1985) showed a reduction in N-translocation efficiency 

at high versus low N supply (Dhugga and Waines, 1989). 

Nutrient Use Efficiency can be partitioned into the individual components of NupE and NutE (Moll et 

al., 1982; Ortiz-Monasterio et al., 1997). NupE can be calculated as the total above-ground N per unit 

of N supplied, including available N from soil or not. Therefore, organic matter N mineralization plays 

an important role in the calculation of N uptake from the soil (Le Gouis et al., 2000). However, 

Youngquist et al. (1992) suggested that when initial soil N contents are equal, genotypic differences in 

NupE can be determined by measuring only plant N. 

Feil et al. (1992) indicated that cultivars producing large amounts of biomass seemed to have a more 

efficient nutrient uptake, which could decrease the total NUE of modern cultivars. Since N 

concentration is higher in leaves than in stems and sheaths, N uptake may be more closely related to 

leafiness than to total shoot biomass (Feil et al., 1997). Moreover, genetic differences in N recovery in 

the grain were mostly attributed to the net N uptake after anthesis rather than of remobilized N 

(Suprayogi et al., 2011). Post anthesis N uptake was found to be exponentially related to grain mass 

(Pan et al., 2006) but may vary with environmental conditions, such as N and water availability (Baresel 

et al, 2008). 

1.1.1. Nitrogen-use efficiency and expression 

Nitrogen-use efficiency may be defined in various terms and their approximate value over region and 

crop basis is shown in Table1. 

Terms Used in Describing N-Use Efficiency (Doberman, 2005) 

 Agronomic efficiency (AEN): It may be defined as increase in grain yield kg grain kg-1 N applied. 

Its value ranges from 18 to 24 kg grain kg-1 N applied and was the smallest in maize and largest in 

rice. 

 Apparent nitrogen recovery (ANR): It may be defined as per cent increase in the uptake of N in 

fertilized crop as compared to control where no N was applied. Its value ranges from 10 to 70 % 

across region and various crops. 

 Physiological efficiency (PEN): It is defined as increase in grain yield Kg grain kg-1 N absorbed. 

Its value ranges from 20 to 52 across various regions and crops. 
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Table1. Descriptive statistics of various NUE terms for cereals in various continents 

Region/Crop AEN REN15 PEN PFPN 

Africa 13.9 0.37 22.9 39.3 

Australia  8.0 0.41 - 54.0 

Europe  21.3 0.61 27.7 50.4 

America  19.6 0.36 28.4 49.6 

Asia  21.5 0.44 46.6 53.5 

Average/Total 19.6 0.44 40.6 51.6 

Maize  24.2 0.40 36.7 72.0 

Rice  22.0 0.44 52.8 62.4 

Wheat  18.1 0.45 28.9 44.5 

Average/Total 20.6 0.44 40.6 51.6 

Source: Anchal et al. (2014) 

Agronomic efficiency (AEN), physiological efficiency index of N (PEN), recovery efficiency (REN15), 

Partial Factor Productivity of N (PFPN). It is the gain in grain yield per kg N applied to the crop. Its 

value ranges between 39 and 72, which means by application of one kg of N, 39–72 kg grain yield can 

be gained across various continents and crops. 

1.2. Enhancing Nitrogen Use Efficiency 

The utilization by crops of N applied through fertilizers varies from 30 to 50% depending upon nature 

of the crop, climate, soil and management practices. It can be 50-60% for wheat grown in temperate 

climates and around 30% for lowland rice grown in coarse textured soils. The energy required to 

produce fertilizer N to be applied per unit area is about one-third of the total energy requirement for 

raising the crop. More efficient use of N fertilizers therefore, means a net saving in energy (IFA, 2016). 

According to IFA, (2016) three types of processes affect excess N not utilized by the crop. Their relative 

impact on the supply of N to crops depends upon weather, soil conditions, and other factors. These 

processes are: - microbial e.g. nitrification, denitrification, immobilization; chemical e.g. exchange, 

fixation, precipitation and hydrolysis; physical e.g. leaching, run-off, volatilization. 

Fertilizer best management practices for the application of plant nutrients attempt to increase nutrient 

use efficiency and minimize unfavorable effects on the environment. The root system of most arable 

crops only explores 20-25% of the available soil volume in any one year. So the utilization of nutrients 

by plants will not only depend on the stage of growth and nutrient demand, but also on the rate of 

delivery of plant nutrients to the root by mass flow and diffusion in the soil solution. 

1.2.1. Split Application 

Application of N fertilizers at multiple times during the growing season–can help improve N use 

efficiency and reduce losses. Applying N fertilizer as close as possible to the time of uptake requirement 

by the crop is a good management strategy to maximize efficiency. Similarly, site-specific fertilizer 

management leads to application of fertilizer N after taking into account the N supplying capacity of 

the soil and thus ensures high fertilizer N use efficiency. Any surplus mineral N remaining in soil at 

harvest is likely to be lost by leaching and denitrification. Use of cover crops and crop residue 

management can help keep the N in organic compounds in the soil and make it less susceptible to 

leaching and denitrification losses. 

1.3. Strategies to Improve NUE 

Cereals require N-fertilizers to produce maximum yields and high protein content (Barraclough et al., 

2010). However, NUE in cereals is generally poor, where it is estimated 30-40% of the total of N-

fertilizers applied is actually harvested in the grain. The reminder of the applied N is lost to the soil, 

where often-excessive application can affect natural ecosystems through N pollution. Loss of N also 

contributes to significant direct economic losses to the grower particularly when N fertilizer costs are 

high (Glass et al., 2003; Gruber and Gilloway, 2008). It has been estimated that an increase in NUE by 

one percent is worth as much as USD $234 million (Magen and Nosov, 2008). Therefore, initiatives to 

improve NUE will be important in order to minimize both N- fertilizer losses and the direct production 

costs of the crop. On the basis of field experiments, (Cassman et al., 2002) reported N recovery in wheat 

varied from as low as 18 percent under unfavorable weather to 49 percent under favorable weather 

conditions. One of the main causes of low NUE in actual N management practices is the limited 
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synchrony between N soil availability and crop demand (Cassman et al., 2002; Fageria and Baligar, 

2005). Consequently, many different agronomic avenues are pursued to improve NUE in cereal crops 

which includes: 1) Application of the correct dose of N-fertilizer and/or application during growth 

stages when N is required; 2) Directed delivery of N to minimize losses or maximize utilization, for 

example, banding or point placement close to the root; 3) Use of cover crops, to retain organic matter 

and soil N in the soil; 4) Increased use of crop rotations (shallow and deep rooted crops), such as wheat 

following legumes, and avoiding wheat- fallow or wheat-wheat scenarios; 5) Use of modern farming 

techniques such as conservation tillage to control weed, soil moisture, erosion, operation costs and 

environment; 6) Identifying the best sowing rate, spacing and depth for best use of soil water and 

fertilizers and 7) The selection of wheat germ plasm that produce larger seeds to ensure quick plant 

establishment and access to available N at the young seedling stage.  

1.4. Plant and Soil Factors Influencing NUE 

As mentioned previously, cereal NUE can be as low as 30-40% due to a range of biotic and agronomic-

based factors. These include the primary growing conditions that influence overall photosynthesis and 

plant respiration such as day/night temperatures (Yoshida et al., 1982) and the amount and timing of 

precipitation (Kravcheckov et al., 2003). High-yielding varieties will often demand larger amounts of 

N fertilizer to meet expected yields or to improve grain quality (higher protein content). While pest and 

disease pressure will often affect demand for N, this can consequently reduce yield and NUE. 

Furthermore, the type of plant also has a dramatic impact on NUE. In general, cereal crops have higher 

N recovery efficiency (REN) than root crops, which in turn have a higher REN than leafy vegetables 

(Balasubramanian et al., 2004). 

The impact of N fertilization on crop plants is very much influenced by the cycling of N between 

inorganic and organic forms and the relationship between the N present in the air, water and soil 

fractions. This transition of N activity is referred to as the N cycle, which describes the different forms 

and stages that N exists in the air, soil, water and the biological continuum. N is never lost completely 

in the cycle, but merely changes its form and availability (Mosier et al., 2004 and Smil et al., 1999). 

The predominant changes include: (1) Ammonification which is the process where organic forms of N 

are converted to ammonium (NH4
+). Soil organisms (bacteria and fungi) carry out the majority of 

ammonification. The organisms receive carbon, N and energy from the breakdown of organic matter, 

while excess N is released; (2) Nitrification is the process involving the conversion of NH4
+ to nitrite 

(NO2
-) and then to nitrate (NO3

-). Soil organisms involved in nitrification processes get energy from the 

chemical transformation of NH4
+ to NO2

-; (3) Denitrification is the process where NO3
- and NO2

- are 

converted into gaseous N (NO2, N2) by microorganisms. Denitrification occurs mainly when there is 

little or no oxygen in the soil (e.g. soil is waterlogged). However, denitrification process stops when 

soil dries; (4) N2 fixation is the conversion of N gas (N2) to NH4
+, either by free living bacteria in soil 

or water, or by bacteria in symbiotic association with plants (e.g. legume symbiosis); (5) N 

immobilization is the process whereby N is incorporated into microbial cells and effectively tied-up’ in 

the 'microbial pool' of N. Immobilization occurs in parallel with ammonification. 

 
Figure1. The global N balance in crop production (adapted from Mosier et al, (2004), and Smil et al, (1999). The 

figures are in Tg (1012 g) per year. Leaching (37 Tg) includes runoff and erosion losses; ammonia volatilization 

(21 Tg) includes volatilization from soil and vegetation 
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Thus N cycling has a significant impact on the quantity and supply of N to the plant. A significant 

component of the N cycle involves soil-based microbial activity. This process is strongly influenced by 

the availability of organic C in the soil, which is used as a primary microbial energy source (Stevenson 

et al., 1994). Application of organic material or crop residues with high C: N ratios to the soil can 

stimulate microbial N immobilization, a process where available NH4
+ and NO3

- is competitively used 

by microbes. This process can reduce crop yield unless N is supplemented with applied fertilizers (Van 

Lauwe et al., 2002). Soil based constraints can also promote or decrease microbial based N cycling 

activities including denitrification, ammonia volatilization (Mosier et al., 2001a; Schlesinger et al., 

1997).  

1.5. Managing Nitrogen use 

Nitrogen is a dynamic and highly mobile element in agricultural soils causing environmental problems 

through increased N pollution that acts both locally and globally (Glass et al., 2003; Gruber and 

Galloway, 2008). The extensive use of N-fertilizers in agriculture has created major problems 

worldwide through N based pollution of surface and underground water supplies. Therefore, 

concentrations of NO3
- in agricultural products and drinking water should be minimized. Although the 

fact that the main source of NO3
- intake is food, not water, the World Health Organization (WHO, 1970, 

modified in 1993) set a recommended limit for drinking water of 50 mg NO3
- per liters. The main issue 

was the microbial conversion of NO3
- to nitrite (NO2

-), which was associated with problems involving 

nitrosamines and methaemoglobin. The so-called “blue-baby syndrome’’ (methaemoglobinaemia), for 

example, arises from bacteria contamination and not from ingesting too much NO3
- as originally 

supposed. Recent work even suggests that ingested NO3
- provides gastro-intestinal protection against 

food-borne pathogens and “epidemiological studies show a reduced rate of gastric and intestinal cancer 

in groups with a high vegetable based nitrate intake’’ (Leifert and Golden, 1997). Elevated 

concentrations of nitrate in streams or aquifers are mostly due to excessive or poorly used N applications 

in agriculture. High NO3
- concentrations in water also occurs in years following drought. High NO3

-

concentrations in forage can cause sickness and death in livestock when grazing due to NO3
- 

accumulation in plant tissue. The accumulation occurs due to high temperature, drought, other nutrients 

deficiency and plant disease (IFA, 2007). 

Urea is a common N fertilizer used in agricultural systems worldwide. It is estimated that more than 

half of all fertilizer used globally is in the form of urea (Gilbert et al., 2006). The benefit of using urea 

as a fertilizer is due to its high N content (≈ 46% N), high solubility, and low expense to manufacture, 

store, and transport (Prasad et al., 1998). However, urea is susceptible to hydrolysis followed by 

ammonia volatilization (Fenn and Hossner, 1985). During hydrolysis, urea N is converted into NH3, 

which subsequently reacts with a proton to produce NH4
+. Under alkaline conditions, the equilibrium 

of NH3 + H2O ← → NH4
+ + OH- shifts more to the NH3 ion, increasing volatilization losses that leads 

to lower the efficiencies of fertilizer N used by plants. Soil texture and organic C content can also play 

an indirect role in N gaseous loss. For example, soils with high sand content generally have lower rates 

of N2O production than do clay soils (Corre et al., 1996). Leaching intensity is controlled by soil texture. 

Lighter sandy soils are more prone to leaching losses than are soils with greater clay content (Hack-ten 

Broeke and de Groot, 1998). 

1.6. Nitrogen Sustainability 

Globally farmers often apply an excess of N as insurance against low yields. This approach can lead to 

increased losses of N from agricultural systems and poor NUE in plant production systems (Dobermann 

and Cassman, 2004; Goulding et al., 2004). One of the challenges for plant breeders will be to increase 

NUE in a manner that will reduce production costs and minimize environmental pollution while at the 

same time meeting both yield and quality measures (Daberkow et al., 2000). 

More sustainable agricultural practices that manage N-delivery and its use across a crop production 

cycle are currently highly sought. For example, the use of split N application procedures, where delivery 

occurs at a time when plants need N during their life cycle will help to achieve improved NUE that 

reduces N loss while sustaining or improving yield and quality (Matson et al., 1998). In light of the 

growing concern about N fertilizer use and its direct economic costs and impacts on the environment, 

most nations are investigating alternative strategies to make agriculture more sustainable. A reduction 

in the amount of N fertilizers applied to the field will help to achieve this but at the same time there is 

a requirement to maintain and or increase yield to meet future food demand. Sustainable agricultural 
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practices, such as N-fertilization based on demand, effective use of crop rotations with N-fixing legumes 

and the establishment of ground covers and burial of N-rich crop residues are encouraged (Hirel et al., 

2007). Others strategies to improve N efficient use are to use genetic modification and/or to breed for 

new varieties that take up more organic or inorganic N from the soil N and utilize the absorbed or 

metabolized N more efficiently without compromising yield (Hirel and Lemaire, 2006). 

2. SUMMARY AND CONCLUSION 

The use of nitrogen fertilizers has played an instrumental role in enhancing agricultural productions 

over the world. Currently, about 83 million tons N is used in agriculture globally. A large portion of 

applied N is lost through leaching, volatilization and runoff, and only 50 % of applied N is assimilated 

by the crop plant. Nitrogen is a key input for sustaining high crop yields, but the fertilizer N uptake 

efficiency in crops is relatively low with conventional production practices (<50%). Recently, there 

have been serious concerns about environmental footprints of N fertilizers, particularly greenhouse gas 

emissions from the rice fields and escalating costs of fertilizers beyond farmers’ reach. To meet the 

growing need for N fertilizers due to the rise in food requirement for ever multiplying population on 

the one hand and an increasing environmental and atmospheric pollution on the other, improving 

nitrogen-use efficiency (NUE) appears to be a viable solution. Use of nitrogen in agriculture is 

indispensable as it is an important constituent of plant material and human food, and its contribution in 

food production is the largest among all other plant nutrients. More than 50 % of applied N is lost 

through various processes, and nitrogen-use efficiency remains below 50 % in most crops. NUE 

includes N uptake, utilization or acquisition efficiency and expressed as a ratio of output (total plant N, 

grain N, biomass yield, grain yield) and input (total N, soil N or N-fertilizer applied). Nitrogen use 

efficiency (NUE) is the product of both nitrogen uptake efficiency which is a root-associated trait, and 

nitrogen utilization efficiency, which is a function of canopy activity. NUE is yield per unit of available 

N. Yield is mainly determined by C fixation in the canopy (which is dependent on N for growth and 

function); grain also requires N for protein, which is transported directly from the soil or from 

remobilization during canopy senescence (major contribution). Nitrogen fertilization provides essential 

benefits for food production but its optimal management is subject to a high level of complexity. 
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