

Alignment Energy Change in Ammonia Formation

Janez Špringer*

Cankarjeva cesta 2, 9250 Gornja Radgona, Slovenia, EU

*Corresponding Author: Janez Špringer, Cankarjeva cesta 2, 9250 Gornja Radgona, Slovenia, EU

Abstract: The alignment energy change supports the non-catalysed synthesis of ammonia from atmospheric air and water.

Keywords: Alignment energy, ammonia formation

1. INTRODUCTION

In this fragment we will discuss the change in alignment energy [1] during ammonia formation from atmospheric air and water with the help of nitrogen plasma [2].

2. THE FORMATION OF AMMONIA FROM ATMOSPHERIC AIR AND WATER

The formation of ammonia from atmospheric air and water with the help of nitrogen plasma [2] goes through three phases (1), (2), (3) as follows:

$$N_{plasma \ gas \ phase} + H_2 O_{water \ phase} \xrightarrow{P/L \ interface \ reaction} NH_{water \ phase} + OH.$$
 (1)

$$NH + H_2O_{water \ phase} \longrightarrow NH_2 + OH.$$
 (2)

$$NH_2 + H_2O_{water \ phase} \xrightarrow[at water \ phase]{} NH_3 + OH.$$
(3)

First phase of ammonia formation takes place in the plasma/liquid (P/L) interface on water surface; second and third phase take place at water under the plasma/liquid interface (See Figure 1) [2].

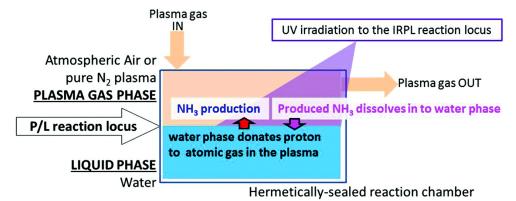


Figure 1. [2] Construction of the interfacial reaction locus between a plasma phase and a liquid phase (P/L reaction locus) for ammonia synthesis. Plasma gas sweeps across the surface of the water phase giving the reaction locus. The reaction locus is treated with UV irradiation.

Produced NH_3 dissolves in to water phase. With the help of UV irradiation to the IRPL reaction locus more ammonia is produced. The reaction can be provided at 25 °C and atmospheric pressure.

3. ALIGNMENT CHARACTERISTICS OF AMMONIA AND ITS CONSTITUENTS

The alignment energy enables the electron to internalize its physicochemical characteristics [1]. The alignment characteristics of ammonia NH_3 and related constituents H, H₂, N, N₂, NH, NH₂ as well as water H₂O and related constituents O, O₂, OH including electron itself (e-) are presented in Table 1. Masses of the elements (H, N, O) and e- are taken from reference [3] and [4], respectively.

International Journal of Advanced Research in Physical Science (IJARPS)

Particle	Mass (Da)	$R_{unaligned} = \frac{m_{particle}}{m_{e^-}} s(1)$	n ∈ ℕ	$R_{aligned} = s(n)$ $= n\left(2 - \frac{1}{\sqrt{1 + \frac{\pi^2}{n^2}}}\right)$	$W_{alignment} = \left(\frac{R_{unaligned}}{R_{aligned}} - 1\right) m_{electron} c^2$
Н	1,00782503189 8	3117,07031	3117	3117,00158	11,2671 eV
H ₂	2,01565006379 6	6234,14062	6234	6234,00079	11,4617 eV
N	14,0030740042 51	43309,66671	4330 9	43309,00011	7,8651 eV
N ₂	28,0061480085 02	86619,33341	8661 9	86619,00006	1,9666 eV
NH	15,0108990361 49	46426,73702	4642 6	46426,00011	8,1110 eV
NH ₂	30,0217980722 98	92853,47403	9285 3	92853,00005	2,6085 eV
NH ₃	31,0296231041 96	95970,54434	9597 0	95970,00005	2,8981 eV
0	15,9949146192 57	49470,16783	4947 0	49470,00010	1,7326 eV
O ₂	31,9898292385 14	98940,33567	9894 0	98940,00005	1,7334 eV
ОН	17,0027396511 55	52587,23814	5258 7	52587,00009	2,3132 eV
H ₂ O	18,0105646830 53	55704,30845	5570 4	55704,00009	2,8288 eV
e-	0,00054857990 907	s(1)=1,69668	1	s(1)	0 eV

Table1. The alignment characteristics of H, H₂, N, N₂, NH, NH₂, NH₃, O, O₂, OH, H₂ O and e⁻

The alignment energies $W_{alignment}$ of concerned physicochemical entities are expressed in electron volts and presented in the last column of Table 1.

4. ALIGNMENT ENERGY CHANGE IN AMMONIA FORMATION FROM ATMOSPHERIC AIR AND WATER

We can see from Table 1 that in all three phases of ammonia formation the alignment energy is released due to accompanied water decomposition (1), (2), (3):

$$\Delta W_{H_20 \to 0H} = W_{0H} - W_{H_20} = 2,3132 \text{ eV} - 2,8288 \text{ eV} = -0,5156 \text{ eV}.$$
(4)

First phase

In the first phase the alignment energy is invested due to $N \rightarrow NH$ reaction:

$$\Delta W_{N \to NH} = W_{NH} - W_N = 8,1110 \ eV - 7,8651 \ eV = 0,2459 \ eV.$$
(4*a*)

So, in the first phase only the next total alignment energy is released:

$$\Delta W_{first \ phase} = \Delta W_{H_2 O \to OH} + \Delta W_{N \to NH} = -0,5156 \ \text{eV} + 0,2459 \ \text{eV} = -0,2697 \ \text{eV}.$$
(4b)

Second phase

In the second phase the alignment energy is released due to $NH \rightarrow NH_2$ reaction:

$$\Delta W_{NH \to NH_2} = W_{NH_2} - W_{NH} = 2,6085 \, eV - 8,1110 \, eV = -5,5025 \, eV. \tag{4c}$$

So, in the second phase the next total alignment energy is released:

$$\Delta W_{second \ phase} = \Delta W_{H_2O \to OH} + \Delta W_{NH \to NH_2} = -0,5156 \text{ eV} - 5,5025 \text{ eV} = -6,0181 \text{ eV}.$$
(4d)

Third phase

In the third phase the alignment energy is invested due to $NH_2 \rightarrow NH_3$ reaction:

$$\Delta W_{NH_2 \to NH_3} = W_{NH_3} - W_{NH_2} = 2,8981 \ eV - 2,6085 \ eV = 0,2897 \ eV.$$
(4e)

So, in the third phase the next total alignment energy is released:

 $\Delta W_{third \ phase} = \Delta W_{H_2 O \to OH} + \Delta W_{NH_2 \to NH_3} = -0.5156 \ \text{eV} + 0.2897 \ \text{eV} = -0.2259 \ \text{eV}. \tag{4}$

5. CONCLUSION

In all phases of ammonia formation from water (4b), (4d), (4f) the alignment energy is released (-0,2697 eV, -6,0181 eV, -0,2259 eV) what enables the ammonia formation (1), (2), (3) without any obstacle from the alignment energy address.

DEDICATION

To climbing the ladder

Figure1. Climbing the ladder [5]

REFERENCES

[1] Janez Špringer (2022) "Alignment Energy Role in Water Formation". International Journal of Advanced Research in Physical Science (IJARPS) 9(1), pp.5-8, 2022.

[2] Haruyama, Tetsuya & Namise, Takamitsu & Shimoshimizu, Naoya & Uemura, Shintaro & Takatsuji, Yoshiyuki & Hino, Mutsuki & Yamasaki, Ryota & Kamachi, Toshi & Kohno, Masahiro. (2016). Non-catalyzed One-step Synthesis of Ammonia from Atmospheric Air and Water. Green Chem. 18. 10.1039/C6GC01560C.

[3] Meng Wang et al. The Ame2020 atomic mass evaluation. Chinese Physics C Vol. 45, No. 3 (2021) 030003

[4] CODATA, retrieved January 2022

[5] https://www.scmref.nl/low-charge-ammonia-climbing-the-ladder/

ADDENDUM

Let us repeat the exercise in the case of heavy water:

The alignment characteristics of ammonia formed from heavy water ND_3 and related constituents D, D_2 , N, N_2 , ND, ND_2 as well as heavy water D_2O and related constituents O, O_2 , OD including electron itself (e-) are presented in Table 2. Again, masses of the elements (D, N, O) and e- are taken from reference [3] and [4], respectively.

Particle	Mass (Da)	$= \frac{m_{particle}}{m_{e^-}} s(1)$	$n \in \mathbb{N}$	$R_{aligned} = s(n)$ $= n \left(2 - \frac{1}{\sqrt{1 + \frac{\pi^2}{n^2}}}\right)$	$W_{alignment} = \left(\frac{R_{unaligned}}{R_{aligned}} - 1\right) m_{electron} c^2$
D	2,01410177784 4	6229,35198	6229	6229,00079	28,8095 eV
D ₂	15,9949146192 57	6234,14062	6234	6234,00079	28,8582 eV
N	14,0030740042 51	43309,66671	4330 9	43309,00011	7,8651 eV
N ₂	28,0061480085 02	86619,33341	8661 9	86619,00006	1,9666 eV
ND	16,0171757820 95	49539,01868	4953 9	49539,00010	0,1917 eV
ND ₂	18,0312775599 39	55768,37066	5576 8	55768,00009	3,3955 eV
ND ₃	20,0453793377 83	61997,72263	6199 7	61997,00008	5,9555 eV
0	15,9949146192 57	49470,16783	4947 0	49470,00010	1,7326 eV
O ₂	31,9898292385 14	98940,33567	9894 0	98940,00005	1,7334 eV

Table2. The alignment characteristics of D, D₂, N, N₂, ND, ND₂, ND₃, O, O₂, OD, D₂O and e⁻

Alignment Energy Change in Ammonia Formation

OD	18,0090163971 01	55699,51981	5569 9	55699,00009	4,7681 eV
D ₂ O	20,0231181749 45	61928,87178	6192 8	61928,00008	7,1929 eV
e-	0,00054857990 907	s(1)=1,69668	1	s(1)	0 eV

The alignment energies $W_{alignment}$ of concerned physicochemical entities are presented in the last column of Table 2.

We can see from Table 2 that in all three phases of ammonia formation the alignment energy is released duo to accompanied heavy water decomposition (1), (2), (3):

$$\Delta W_{D_2 O \to O D} = W_{O D} - W_{D_2 O} = 4,7681 \text{ eV} - 7,1929 \text{ eV} = -2,4248 \text{ eV}.$$
(5)

First phase

In the first phase the alignment energy is released due to $N \rightarrow ND$ composition:

$$\Delta W_{N \to ND} = W_{ND} - W_N = 0,1917 \ eV - 7,8651 \ eV = -7,6734 \ eV.$$
(5a)

So in the first phase the next total alignment energy is released:

$$\Delta W_{first \ phase} = \Delta W_{D_2 O \to OD} + \Delta W_{N \to ND} = -2,4248 \text{ eV} - 7,6734 \text{ eV} = -10,0982 \text{ eV}.$$
(5b)

Second phase

In the second phase the alignment energy is invested due to $ND \rightarrow ND_2$ composition:

$$\Delta W_{ND \to ND_2} = W_{ND_2} - W_{ND} = 3,3955 \ eV - 0,1917 \ eV = 3,2038 \ eV.$$
(5c)

So in the second phase the next total alignment energy is invested:

$$\Delta W_{second \ phase} = \Delta W_{D_2 O \to OD} + \Delta W_{N D \to N D_2} = -2,4248 \text{ eV} + 3,2038 \text{ eV} = 0,7790 \text{ eV}.$$
(5d)

Third phase

In the third phase the alignment energy is invested due to $NH_2 \rightarrow NH_3$ composition:

$$\Delta W_{ND_2 \to ND_3} = W_{ND_3} - W_{ND_2} = 5,9555 \ eV - 3,3955 \ eV = 2,5600 \ eV.$$
(5e)

So in the third phase the next total alignment energy is invested:

 $\Delta W_{third \ phase} = \Delta W_{D_2 O \to OD} + \Delta W_{N D_2 \to N D_3} = -2,4248 \text{ eV} + 2,5600 \text{ eV} = 0,1352 \text{ eV}.$ (5f)

Only in the first phase of ammonia formation from heavy water (5b) the alignment energy is released (-10,0982 eV) what supports the ammonia formation (1), (2), (3). In the other two phases (5d), (5f) some activation energy is needed (+0,7790 eV,+0,1352 eV) what could slow down the ammonia formation (2), (3) from heavy water as noted in reference [2] where the ammonia production rate in the case of D2O was less than half of that in the case of H2O.

Citation: Janez Špringer (2022) "Alignment Energy Change in Ammonia Formation". International Journal of Advanced Research in Physical Science (IJARPS) 9(1), pp.9-12, 2022.

Copyright: © 2022 Authors, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.