

Protonation in Noble Gas Containing Molecular Systems: Observing Periodic Trends in CF₃Cl, CF₃Br, CH₃F, CH₃Cl

Emmanuel E. Etim^{1*} Oko Emmanuel, Godwin¹, Sulaiman Adeoye Olagboye²

¹Department of Chemical Sciences, Federal University Wukari, PMB 1020, Wukari, Taraba State, Nigeria ²Department of Chemistry, Ekiti State University, Ado -Ekiti, Nigeria

*Corresponding Author: Emmanuel E. Etim, Department of Chemical Sciences, Federal University Wukari, PMB 1020, Wukari, Taraba State, Nigeria

Abstract: Protonation of molecular systems containing noble gases have been studied and compared for CF_3Cl , CF_3Br , CH_3F , and CH_3Cl with the aim of pointing out and defining the periodic trends existing in such molecules. This was achieved by calculating the proton affinities (PA) of the molecules using high level Ab-initio methods. This studies reveals that CF_3Cl and CF_3Br follows the same trend while CH_3F and CH_3Cl follows a different trend; For CF_3Cl and CF_3Br the most stable site of protonation differs from the site which corresponds to the experimentally determined PA value while for CH_3F and CH_3Cl , the most stable site of protonation is the same as the site which corresponds with the experimentally determined PA. These findings have uncovered the paucity of information available in literature on noble gas containing molecular systems and have provided a good rationale for exploiting the interstellar mediums (ISM).

1. INTRODUCTION

One of the most significant reaction in chemistry and biology is protonation reaction as it applies to many stoichiometric, catalytic and enzymatic processes, such a reaction is commonly depicted by the general equation $A + H^+$ AH^+ [1,2]. During a protonation reaction, a proton is added to the molecule, atom or ion leading to a change in charge and mass of the molecule, atom or ion and release of energy. The released energy is termed proton affinity [3]. The proton affinity of molecules can be determined using experimental approaches but this method poses great difficulties and promted the advent of the advanced computational methods which have have stand the taste of time in modern chemistry [4,5,6,7,8]

The application of Proton affinity (PA) is of significance owing to its use in exploring the interstellar mediums (ISM) [9,10,11,12]. According to Croswell [13], noble gases containing molecular systems do not form naturally on earth but in the interstellar medium due to their completely filled outer orbital and scientist are using their presence in the interstellar medium to probe the history of the universe. Owing to the high temperature and density in the ISM, noble gases tend to things ordinarily they would not undergo here on earth. The presence of noble gases and noble gas containing molecular species in the ISM has been reported by many scientists [15,16,17] the presence of hydrogen in abundance in the ISM contributes to the interactions and reactions leading to the formation of noble gas containing molecular systems such as the once under study.

Having verified the presence of noble gass containing molecular systems in the ISM, it is worthy of note that **F**, **Cl** and **Br** are all noble gases anad all in the same group, the question of whether there is or not a trend amongst **CF₃Cl**, **CF₃Br**, **CH₃F**, and **CH₃Cl** triggered the present study, thus the aim of this research is; (i) to observe and define the periodic trend in **CF₃Cl**, **CF₃Br**, **CH₃F**, and **CH₃Cl** (ii) To use the high level Ab-initio computational methods in calculating their proton affinities (iii)To bridge the gap between currently existing in literature on noble gas containing molecular systems.

2. METHODOLOGY

We employed the high level Gaussian 09 suit of programs in calculating the PAs of the molecular species as described by Frisch and his co-workers [18]. Six (6) Ab-initio computational methods which include: Gaussian 04 (G4) compound method, Hartree-Fock (HF) method, Becke, three-parameter, Lee-Yang-Parr (B3LYP) method, Coupled Cluster Single Double CCSD/6-311++G**, Moller-Plesset perturbation theory (MP2) at 6-311++G** basis set and Moller-Plesset perturbation theory (MP2) at cc-pVDZ basis set were used in carrying out the calculations

These methods were chosen based on experience from our previous studies [9, 10, 11, 12, 19] in which these methods were applied and accurate results were obtained. Also, the use of these methods is essential in monitoring how consistent or coherent the results are which will aid in determining the best method. The proton affinity (PA) is calculated as the difference in energy (Electronic Energy) between a neutral specie and its protonated analogue.

3. RESULTS AND DISCUSSION

The results obtained for the quantum chemical calculations are presented and discussed below;

1. CF₃Cl (Chlorotrifluoromethane)

There are 3 possible sites for protonation in this molecule, however, when a proton is attached to the central carbon atom, it optimizes to the one in which the proton is attached to any of the fluorine atoms, thus leaving us with only two protonated analogues instead of 3. Table 1a and 1b shows the PA of the protonated molecular species formd from CF_3Cl and their Sum of electronic and zero-point Energies respectively

Mathad	Proton attached to F a	tom	Proton attached to Cl atom		
Method	PA (kcal/mol)	Error	PA (kcal/mol)	Error	
HF/6-311++G**	141.3358	-4.83584	133.7875	2.712471	
B3LYP/6-311++G**	142.3298	-5.82982	133.7687	2.731296	
MP2/6-311++G**	145.9286	-9.42858	132.4836	4.016436	
MP2/cc-pVDZ	144.5412	-8.14116	138.6696	-2.16955	
CCSD/6-311++G**	145.5339	-9.03388	140.3205	-3.82053	
G4	144.8279	-8.32793	145.3619	-8.86194	
Expt	136.5	NA	136.5	NA	

Table1. *PA values for CF*₃*Cl (Chlorotrifluoromethane)*

The experimentally measured PA value for CF_3Cl corresponds to the protonated analogue in which the proton is attached to the Cl-atom. However, the protonated analogue in which the proton is attached to the F-atom is found to be the most stable as shown by the energy value from the different quantum chemical calculation methods in table 1b. The structures are shown in Fig. 1a-c

Fig. 1c Geomtery for protonation at Cl

Table1b.	Sum	of	electronic	and	zero-	point	Eners	gies	for	protonated	mol	ecular	species
	~~~~~	~ <i>j</i>	01001101110		2010	p 0	2	Sec. J	,	p. 0.0			species

Mathod	Energy (Hartree/Particle)*				
Wiethod	F	Cl			
HF/6-311++G**	-795.997	-795.985			
B3LYP/6-311++G**	-798.176	-798.162			
MP2/6-311++G**	-796.899	-796.878			
MP2/cc-pVDZ	-796.739	-796.729			
CCSD/ 6-311++G**	-796.758	-796.75			
G4	-798.057	-798.058			

# Protonation in Noble Gas Containing Molecular Systems: Observing Periodic Trends in CF₃Cl, CF₃Br, CH₃F, CH₃Cl

### 2. CF₃Br (Bromine Trifluoromethane)

There are 3 possible sites (Br, C and any of the identical F-atoms) for protonation in this molecule, however, when a proton is attached to the central carbon atom, it optimizes to the one in which the proton is attached to any of the fluorine atoms, thus leaving us with only two protonated analogues instead of 3. The optimized geometries are as shown in Fig 2a-c

Mathod	Proton attache	ed to F atom	Proton attached to Br atom		
Ivietiiou	PA (kcal/mol)	Error	PA (kcal/mol)	Error	
HF/6-311++G**	144.8913	-6.29131	134.4163	4.183707	
B3LYP/6-311++G**	146.3233	-7.72329	139.875	-1.275	
MP2/6-311++G**	149.014	-10.414	137.9906	0.609413	
MP2/cc-pVDZ	147.5877	-8.98772	142.7176	-4.11762	
CCSD/6-311++G**	148.9651	-10.3651	144.1013	-5.50127	
G4	147.7264	-9.1264	148.967	-10.367	
Expt	138.6	NA	138.6	NA	

 Table2a. PA values for CF₃Br (Bromine Trifluoromethane)

In Table 2a, The MP2 method with the  $6-311++G^{**}$  basis set accurately predicts the PA value of CF₃Br with an error of 0.609 kcal/mol. The experimentally measured PA value for CF₃Br corresponds to the protonated analogue in which the proton is attached to the Br-atom. However, the protonated analogue in which the proton is attached to the F-atom is found to be the most stable as shown by the energy value from the different quantum chemical calculation methods presented in table 2b.



Fig.2c Geometry for protonation at Br

<b>Tuble Bol</b> Sum of electronic and zero point Energies for protonaled molecular species	Table2b.	Sum	of ele	ctronic	and	zero-	point	Ener	gies	for	protonated	moleci	ılar	species
---------------------------------------------------------------------------------------------	----------	-----	--------	---------	-----	-------	-------	------	------	-----	------------	--------	------	---------

Mathad	Energy (Hartree/Particle)*				
Method	F	Br			
HF/6-311++G**	-2908.86	-2908.84			
B3LYP/6-311++G**	-2912.1	-2912.09			
MP2/6-311++G**	-2909.75	-2909.73			
MP2/cc-pVDZ	-2909.61	-2909.61			
CCSD/ 6-311++G**	-2909.63	-2909.62			
G4	-2911.73	-2911.74			

### 3. CH₃F (Fluoroform)

Table3a. PA values for CH₃F (Fluoroform)

Mathod	Proton attached to F a	tom	Proton attached to C atom		
Wiethou	PA (kcal/mol)	Error	PA (kcal/mol)	Error	
HF/6-311++G**	148.9143	-5.81427	117.6762	25.42378	
B3LYP/6-311++G**	141.2154	1.884642	112.1692	30.9308	
MP2/6-311++G**	142.1334	0.966595	110.4467	32.65331	

# Protonation in Noble Gas Containing Molecular Systems: Observing Periodic Trends in CF₃Cl, CF₃Br, CH₃F, CH₃Cl

MP2/cc-pVDZ	146.4099	-3.30988	114.6774	28.42264
CCSD/6-311++G**	148.3508	-5.25077	115.6425	27.45753
G4	147.9805	-4.88054	121.1765	21.92353
Expt	143.1	NA	143.1	NA

As observed in the previous case, the MP2 method with the  $6-311++G^{**}$  basis set excellently predicts the PA value of CH₃F with an error of 0.966 kcal/mol. The experimentally measured PA value for CH₃F corresponds to the protonated analogue in which the proton is attached to the F-atom. Unlike in the cases of CF₃Cl and CF₃Br, the protonated analogue in CH₃F in which the proton is attached to the F-atom is also found to be the most stable protonated analogue. Table 3a-b depicts the proton PA and Sum of electronic and zero-point Energies for protonated molecular species respectively and their geometries as shown in fig. 3a-c

**Table3b.** Sum of electronic and zero-point Energies for protonated molecular species

Mathod	Energy (Hartree/Particle)*				
Wiethod	F	С			
HF/6-311++G**	-139.279	-139.229			
B3LYP/6-311++G**	-139.977	-139.931			
MP2/6-311++G**	-139.634	-139.583			
MP2/cc-pVDZ	-139.573	-139.522			
CCSD/ 6-311++G**	-139.598	-139.546			
G4	-139.942	-139.899			



Fig. 3a Optimized geometry for CH₃F

Fig.3b Geometry for the protonation at F



Fig. 3c Geometry for protonation at C

### 4. CH₃Cl (Chloromethane)

**Table4a.** *PA values for CH*₃*Cl (Chloromethane)* 

Mathad	Proton attached to Cl	atom	Proton attached to C atom		
wiethou	PA (kcal/mol)	Error	PA (kcal/mol)	Error	
HF/6-311++G**	133.9739	-20.7261	109.0825	-45.6175	
B3LYP/6-311++G**	118.9833	-35.7167	114.2939	-40.4061	
MP2/6-311++G**	115.3318	-39.3682	114.3517	-40.3483	
MP2/cc-pVDZ	117.4133	-37.2867	114.2814	-40.4186	
CCSD/6-311++G**	123.0352	-31.6648	114.9591	-39.7409	
G4	120.7429	-33.9571	116.6226	-38.0774	
Expt	154.7	NA	154.7	NA	

As observed in previous cases, the different quantum chemical calculation methods employed in this study are able to predict the PA values to a very good accuracy. Thus, we suspect error in the experimentally reported PA value for  $CH_3Cl$  in which the least error in all the methods is 20.726 kcal/mol obtained at the Hartree Fuck level with the 6-311++G** basis set in table 4a. Be it as it may, going with the least error, the experimentally measured PA value for  $CH_3Cl$  corresponds to the protonated analogue in which the proton is attached to the Cl-atom. This protonated analogue is also found to be the most stable as shown in the table 4b. the geometries are shown in Fig. 4a-c.

# Protonation in Noble Gas Containing Molecular Systems: Observing Periodic Trends in CF₃Cl, CF₃Br, CH₃F, CH₃Cl

Method	Energy (Hartree/Particle)*		
Method	Cl	С	
HF/6-311++G**	-499.306	-499.266	
B3LYP/6-311++G**	-500.304	-500.296	
MP2/6-311++G**	-499.574	-499.573	
MP2/cc-pVDZ	-499.552	-499.547	
CCSD/ 6-311++G**	-499.591	-499.578	
G4	-500.27	-500.264	

Table4b. Sum of electronic and zero-point Energies for protonated molecular species





Fig. 4a Optimized geometry for CH₃Cl

Fig. 4b Geometry for protonation at Cl



Fig. 4c Geometry for protonation at C

### 5. Factors that could influence the best site of protonation

From the foregoing studies, the following have been observed as factors which could influence the best site of protonation;

- (i) Bonding Nature
- (ii) Stability of the protonated analogue
- (iii) Electron density/electronegativity

#### 4. CONCLUSION

The protonation in noble gas containing molecular systems have been studied and elucidated by employing six high definition Ab-initio quantum chemical calculation methods with the aim of observing whether or not there exist a periodic trend amongst  $CF_3Cl$ ,  $CF_3Br$ ,  $CH_3F$ ,  $CH_3Cl$ . The best site of protonation i.e the site that corresponds with the experimentally measured proton affinity for each molecule were recorded and the most stable analogue were also pointed out which all aided in obbsereving the periodic trend. From the results obtained, it reveals that  $CF_3Cl$  and  $CF_3Br$  follow the same trend while both  $CH_3F$  and  $CH_3Cl$  follow a different trend. For  $CF_3Cl$  and  $CF_3Br$ ; the most stable site of protonation and the site which corresponds to the experimentally determined proton affinity are quite different sites while for  $CH_3F$  and  $CH_3Cl$ ; the most stable site of protonation and the site which corresponds to the experimentally determined proton affinity are the same sites. These observationws obviously are due to electron density/electronegativity, nature of bonding or stability of protonated analogue.

#### REFERENCES

- [1] Zumdahl, S.S (1986). Chemistsry, Lexington, MA: Heath. ISBN 0-669-04529-2
- [2] Dixon D.A.; Lias, S.G. In Molecular Structure and Energetics, Vol. 2, Phys-
- [3] ical Measurements; Liebman, J. F.; Greenberg, A., Eds., VCH, Deer_eld
- [4] Beach, FL, 1987.
- [5] John L. Holmes, Nick A van Huizen and Peter C. Burgers. Proton affinities and ion enthalpies. Eur. J. mass Spectrom. (Chichester). 2017. 23(6): 341-350 doi: 10.1177/1469066717728451
- [6] P. Kebarle. Ion Thermochemistry and salvation from Gas phase ion equilibria. Annual Review of Physical Chemistry, Vol. 28: 445-476 (1977) doi: 10:1146/annurev.pc.28.100177.002305
- [7] Mahmoud Tabrizchi and Saeed Shooshtari, Proton Affinity measurementsusing ion mobility spectrometry. J. Chem. Thermodynamics 35(2003) 863-870 doi: 10.1016/S0021-9614(02)00316-6
- [8] G.A. Eiceman, Z. Karpas (Eds.), Ion Mobility Spectrometry, CRC Press, Boca Raton, 1993.
- [9] QingFeng Chen, John M. Goodings, The measurement of high proton affinities for a variety of metallic compounds: a new approach by flame-ion mass spectrometry, International Journal of mass spectrometry, 181(1998) 181-199.
- [10] Cramer, Christopher J. (2002). Essentials of Computational Chemistry. Chichester: John Wiley & Sons, Ltd. pp 191-232. ISBN 978-0-471-48552-0
- [11] Etim, E.E., Oko, G.E., Onen, A.I., Ushie O.A., Andrew, C., Lawal, U., Khanal, G.P., Computational Studies of Sulphur trioxide (SO₃) and its protonated analogues. J.Chem. Soc. Nigeria, Vol. 43, No.2, pp 10-17 (2018)
- [12] Emmanuel Edet Etim, Chrysanthus Andrew, Usman Lawal, Ifeoma Sandra Udegbunam and Etiowo George Ukpong, 2020. Protonatioin of Carbonyl Sulfide: Ab-initio study. J. Applied Sci., 20: 26-34
- [13] Etim, E.E., Arunan, E. interstellar isomeric species, energy, stability and abundance relationship. Eur. Phys. j. plus 131,448 (2016) <u>https://doi.org/10.1140/epje/i2016-16448-0</u>
- [14] Etim, E.E., Abah, B.S., Mbakara, I.E., Inyang, E.J. and Ukafia, O.P. (2017). Quantum Chemical Calculations on Silicon Monoxide (SiO) and its Protonated Analogues. Tropical Journal of Applied Natural Sciences, 2(1): 61-68. doi: <u>https://doi.org/10.25240/TJANS.2017.2.1.10</u>.
- [15] Ken Croswell, Knowable Magazine, December 12, 2019, 9:20 PM
- [16] Barlow, M.J., Swinyard, B.M., Owen, P.J., Cernicharo, J., Gomez, H.L., Ivison, R.J., Krause, O., Lim, Y.L., Matsuura, M., Miller, S., Olofson, G., Polehampton, E.T., Detection of a noble gas molecular ion, 36ArH⁺, in the Crab Nebula. American Association of the Advancement of Science. Washington, DC, United States (2013), 342 (6164), 1343-1345 CODEN; SCIEAS; ISSN: 0036-8075.
- [17] Gerald T. Filipek and Ryan C. Fortenberry. ACS Omega 2016 1 (5), 765-772 DOI: 10.1021/acsomega.6b00249
- [18] Partington, J.R (1957) Discovery of Radon 179 (4566): 912 DOI: 10.1038/179912a0
- [19] Cederblom J.E (1904) "The Noble Prize in Chemistry" 1904 Presentaton Speech
- [20] Frisch, M.J., Toucks, G.W., Schlegel, H.B., Scuseria G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Baron, V., Mennucci, B., Peterson, G.A., (2009) Gaussian 09 revision D.01; Gaussian, Inc., Wallingford, CT.
- [21] Emmanuel E. Etim, Sulaiman Adeoye Olagboye, Oko Emmanuel Godwin, Irene Mfoniso Atiatah, Quantum Chemical studies on Silicon tetrafluoride and its protonated analogues. Int. J. Modern Chem. 2020,

**Citation:** Emmanuel E. Etim, et.al., (2020). Protonation in Noble Gas Containing Molecular Systems: Observing Periodic Trends in CF₃Cl, CF₃Br, CH₃F, CH₃Cl, International Journal of Advanced Research in Physical Science (IJARPS) 7(6), pp. 14-19 2020.

**Copyright:** 2020, Authors, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.