Double Surface Characteristics of Methane

Janez Špringer*
Cankarjeva cesta 2, 9250 Gornja Radgona, Slovenia, EU

*Corresponding Author: Janez Špringer, Cankarjeva cesta 2, 9250 Gornja Radgona, Slovenia, EU

Abstract: It looks like methane molecule possesses the double surface characteristics in accordance with its tetrahedral structure.

Keywords: methane tetrahedral structure, common tetrahedral orbit, double-surface characteristics

1. Introduction

The aim of this article is to examine the double-surface characteristics of methane which is known to be a perfectly symmetrical tetrahedral molecule.[1] In a tetrahedral molecular geometry, a central atom is located at the center with four substituents that are located at the corners of a tetrahedron. The bond angles HCH equal $\cos ^{-1}(-1 / 3)=109.4712206 \ldots{ }^{\circ} \approx 109.5^{\circ}$ when all four substituents are the same, as in methane $\left(\mathrm{CH}_{4}\right)$ where the substituents are hydrogen atoms forming four CH bonds of the length yielding 108.70 pm .[1] The CH_{4} geometry is presented in Fig1[2]:

Fig1. The geometry of methane [2]

2. The Subtle Orbit Between Two Hydrogen Corners

The examination of the double-surface characteristics of methane should be credible since the value of bond angle HCH is exact and the bond length CH to two decimal places is given sufficiently precisely:
$H C H=\cos ^{-1}\left(-\frac{1}{3}\right)=109.4712206 \ldots$.
$C H=108.70 \mathrm{pm}$.
The HH distance is given by the cosine rule:
$H H=C H x \sqrt{2(1-\cos H C H)}=108.70 \mathrm{pm} x \sqrt{2\left(1+\frac{1}{3}\right)}=177.506356694 \mathrm{pm}$.
By analogy to bent molecules the measured subtle orbit between two hydrogen corners should be $\pi-$ times longer [3]:
$s_{\text {bent }}^{\text {measured }}=\pi \times H H=557.652666154 \mathrm{pm}=229.835681241 \lambda_{e}$.
The above result (4) does not provide a stable orbit which should otherwise meet the double-surface criteria[3]:
$s_{n}=n\left(2-\frac{1}{\sqrt{1+\frac{\pi^{2}}{n^{2}}}}\right), n \in \mathbb{N}$.
This is not a surprise since in tetrahedral molecule - not only two - but all four hydrogen corners are equally adjacent to each other as we can see in Fig2 [4]:

Fig2. The tetrahedral structure of methane [4]

3. The Tetrahedral Orbit between Four Hydrogen Corners

Let us propose a subtle orbit between all four hydrogen corners in the methane molecule. The projection of electron path of such a common tetrahedral orbit is presented in Fig3 [5].

Fig3. The projection of tetrahedral electron pathway between hydrogen corners of the methane molecule [5]
We can see that the length of a common tetrahedral path should be 12 -times longer than the distance between two hydrogen corners (4). Twelve HH distances should be passed by the electron on its round way from the starting to the final - again starting position. Note (4) that the real path is $\pi-$ times longer than the projection shown in Fig3:
$s_{\text {tetrahedral }}^{\text {measured }}=s_{\text {bent }}^{\text {measured }} x 12=2758.028 \lambda_{e} \approx s_{2758}=2758.002 \lambda_{e}$.
The given common tetrahedral orbit satisfies the double surface characteristics (5). A little shorter CH bond length, for instance of 108.699 pm , would offer the accordance to the third decimal.

4. CONCLUSION

Proposed common molecular tetrahedral orbit length of methane explains the double-surface characteristics of methane molecule. Thus [5]:

Fig4. Forming molecular tetrahedral orbit of methane

DEDICATION

This fragment is dedicated to judiciousness

APPENDIX

The double-surface characteristics found for methane should be expected for other tetrahedral molecules, too. Enough accurate geometry to prove it is available for SiH_{4} and GeH_{4}. From the bond length $\mathrm{SiH}=147.98 \mathrm{pm}$ and $\mathrm{GeH}=152.51 \mathrm{pm}$ follows a tetrahedral path consisting of 9 and 15 HH distances, respectively.

REFERENCES

[1] https://en.wikipedia.org/wiki/Tetrahedral_molecular_geometry. Retrieved February 2020
[2] https://mathoverflow.net/questions/219889/positions-of-a-methane-molecule-with-carbon-atom-at-the-origin. Retrieved February 2020
[3] Janez Špringer, (2020).Stable Intra Molecule Connection of Hydrogen Atoms in Water Molecule" . International Journal of Advanced Research in Physical Science (IJARPS) 7(2), pp.21-22, 2020
[4] https://www.britannica.com/science/methane. Retrieved February 2020
[5] http://2015.igem.org/Team:Warwick/modelling3. Retrieved February 2020

Citation: Janez Špringer, (2020). "Double Surface Characteristics of Methane". International Journal of Advanced Research in Physical Science (IJARPS) 7(3), pp.39-41, 2020.
Copyright: © 2020 Authors, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

