Dynamics Constant Deduced from Relativistic Mass and Distance on Bohr Orbit

Janez Špringer
Cankarjeva cesta 2, 9250 Gornja Radgona, Slovenia, EU

*Corresponding Author: Janez Špringer, Cankarjeva cesta 2, 9250 Gornja Radgona, Slovenia, EU

Abstract

The relativistic mass and distance on Bohr orbit can be explained by Heracletean dynamics with the dynamics constant $k=2.29 x \llbracket 10 \rrbracket \wedge(-47) \llbracket k g \rrbracket \wedge 2 m \wedge 2 s^{\wedge}(-2)$ being comparable to some previously estimated values.

Keywords: Heracletean dynamics and Einsteinian dynamics, relativistic mass and distance on Bohr orbit, dynamics constant

1. Introduction

Respecting Heracletean dynamics [1] for mass ($m_{\text {ground }} \rightarrow m_{\text {relativistic }}$):
$m_{\text {relativistic }}^{2} c^{2} a^{2}=e^{\frac{m_{\text {ground }} c^{2}-k(1-\ln k)+m_{r e l a t i v i s t i c ~} c^{2}\left(a^{2}-1\right)}{2}} k$
As well as for distance $\left(s_{0} \rightarrow s\right)$:
$s_{0}^{2} c^{2} a^{2}=e^{\frac{s^{2} c^{2}-k(1-\ln k)+s_{0}^{2} c^{2}\left(a^{2}-1\right)}{k}}$
At some speed a expressed in the units of speed of light $c=2.99792458 .10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$ the characteristic dynamics constant k can be calculated with the help of known relativistic parameters.
Dividing equation (1) by equation (2) gives:
$\frac{m_{r e l a t i v i s t i c ~}^{2}}{s_{0}^{2}}=\frac{e^{\ln k-1+\frac{a^{2} m_{\text {relativistic }}^{2} c^{2}}{k}+\frac{m_{\text {ground }}^{2} c^{2}-m_{r e l a t i v i s t i c ~} c^{2}}{k}}}{e^{\ln k-1+\frac{a^{2} s_{0}^{2} c^{2}}{k}+\frac{s^{2} c^{2}-s_{0}^{2} c^{2}}{k}}}$.
Rearranging gives:
$\frac{m_{\text {relativistic }}^{2}}{s_{0}^{2}}=e^{\frac{a^{2}\left(m_{\text {relativistic }}^{2} c^{2}-s_{0}^{2} c^{2}\right)+\left(m_{\text {ground }}^{2} c^{2}-m_{\text {relativistic }}^{2} c^{2}\right)-\left(s^{2} c^{2}-s_{0}^{2} c^{2}\right)}{k}}$.
Logarithm gives:
$\ln \frac{m_{\text {relativistic }}^{2}}{s_{0}^{2}}=\frac{a^{2}\left(m_{\text {relativistic }}^{2} c^{2}-s_{0}^{2} c^{2}\right)+\left(m_{\text {ground }}^{2} c^{2}-m_{\text {relativistic }}^{2} c^{2}\right)-\left(s^{2} c^{2}-s_{0}^{2} c^{2}\right)}{k}$.
Convenient is the explicit form for the unknown a^{2} :
$a^{2}=\frac{\frac{k}{c^{2}} \ln \frac{m_{\text {relativistic }}^{2}}{s_{0}^{2}}-\left(m_{\text {ground }}^{2}-m_{\text {relativistic }}^{2}\right)+\left(s^{2}-s_{0}^{2}\right)}{\left(m_{\text {relativistic }}^{2}-s_{0}^{2}\right)}$.
Since for instance inserting $a^{2}(5)$ in the equation (1) the implicit form for the calculation of dynamics constant k is given:
$m_{\text {relativistic }}^{2} c^{\frac{\frac{k}{c^{2}} \ln \frac{m_{\text {relativistic }}^{2}}{s_{0}^{2}}-\left(m_{\text {ground }}^{2}-m_{\text {relativistic }}^{2}\right)+\left(s^{2}-s_{0}^{2}\right)}{\left(m_{\text {relativistic }}^{2}-s_{0}^{2}\right)}}$
$=e^{m_{\text {ground }}^{2} c^{2}-k(1-\ln k)+m_{\text {relativistic }} c^{2}\left(\frac{\frac{k}{c^{2}} \ln \frac{m_{\text {relativistic }}^{2}}{s_{0}^{2}}-\left(m_{\text {ground }}^{2}-m_{\text {relativistic }}^{2}\right)+\left(s^{2}-s_{0}^{2}\right)}{\left(m_{\text {relativistic }}^{2}-s_{0}^{2}\right)}-1\right)}$.

2. BOHR ORBIT

On Bohr Orbit the next mass values are available [2]:
$m_{\text {ground }}=9.1093837015 .10^{-31} \mathrm{~kg}$,
$R y=0.00024254351048 .10^{-31} \mathrm{~kg}$,
$m_{\text {relativistic }}=m_{\text {ground }}+R y=9.1096262450 .10^{-31} \mathrm{~kg}$.
And the next distance values [2] can be proposed:
$s_{0}=\lambda_{e}=2.4263102367 .10^{-12} \mathrm{~m}$,
$\alpha^{-1}=137.035999084$,
$s=\frac{137}{\alpha^{-1}} \lambda_{e}=2.4256728498 .10^{-12} \mathrm{~m}$.
Such a set of data does not obey Einsteinian dynamics since:
$\frac{9.1096262450 .10^{-31} \mathrm{~kg}}{9.1093837015 .10^{-31} \mathrm{~kg}}=\frac{m_{\text {relativistic }}}{m_{\text {ground }}} \neq \frac{s_{0}}{s}=\frac{137.035999084}{137}$.
Heracletean dynamics with the non-zero dynamics constant k could be the explanation for the discrepancy. The concerned constant k can be calculated with the help of equation (7) which for the considered set of data (8), (9) takes a little friendlier approximate form:
$m_{\text {relativistic }}^{2} c^{2}\left(1-\frac{s^{2}}{s_{0}^{2}}\right) \approx e^{\frac{\left(m_{\text {ground }}^{2}-m_{\text {relativistic }}^{2} \frac{s^{2}}{s_{0}^{2}}\right) c^{2}}{k}+\ln k-1}$.
Or
$\frac{\left(m_{\text {ground }}{ }^{-} m_{\text {relativistic }}^{2} \frac{s^{s^{2}}}{s_{0}^{2}}\right) c^{2}}{k}+\ln k \approx 1+\ln m_{\text {relativistic }}^{2} c^{2}\left(1-\frac{s^{2}}{s_{0}^{2}}\right)$.
Thus, on Bohr orbit (8), (9) the next value of dynamics constant is given:
$k=2.292014 \times 10^{-47} \mathrm{~kg}^{2} \mathrm{~m}^{2} \mathrm{~s}^{-2}$.
The above result (13) is near the previously estimated values $5.94 \times 10^{-46}, 7.44 \times 10^{-46}$ and 6.27×10^{-46} $\mathrm{kg}^{2} \mathrm{~m}^{2} \mathrm{~s}^{-2}$ pertaining to the gamma ray delay [3], dual aspect of gravity [3] and discrete communication model [4], respectively.

Interesting is the associated speed a of the electron on Bohr orbit given by the equation (6) which in our case (8), (9) takes Einsteinian form:
$a^{2} \approx 1-\frac{s^{2}}{s_{0}^{2}}$.
And (9)
$a \approx \pi \alpha$.
This means that the electron only apparently circulates on Bohr orbit with the speed $a=\alpha$ relative to the speed of light. Actually the electron should take about π-times longer route applying about π-times faster speed around Bohr orbit.

3. CONCLUSION

It seems that with the help of new tools a classical approach for describing the atomic world is not yet exhausted.

DEDICATION

This fragment was written on the first school day and is dedicated to the open thinking

REFERENCES

[1] Janez Špringer, (2019). Relativistic Time and Distance in Heracletean Dynamics. International Journal of Advanced Research in Physical Science (IJARPS) 6(9), pp 1-2, 2019.
[2] CODATA, https://physics.nist.gov/cuu/Constants/, retrieved September 2019
[3] Janez Špringer, (2015).Gamma Ray Delay and Dual Aspect of Gravity in Heracletean World (Working Hypothesis). International Journal of Advanced Research in Physical Science (IJARPS), 2(7), pp 40-43, 2015.
[4] Janez Špringer, (2015).Discrete Communication in Heracletean World. International Journal of Advanced Research in Physical Science (IJARPS), 2(10), pp 31-35, 2015.

Citation: Janez Špringer, (2019). Dynamics Constant Deduced from Relativistic Mass and Distance on Bohr Orbit. International Journal of Advanced Research in Physical Science (IJARPS) 6(9), pp.19-21, 2019.

Copyright: © 2019 Authors, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

