International Journal of Advanced Research in Physical Science (IJARPS)

Volume 10, Issue 2, 2023, PP 1-2 ISSN No. (Online) 2349-7882 www.arcjournals.org

With Speed of Expanding Universe to Beauty

Janez Špringer*

Cankarjeva cesta 2, 9250 Gornja Radgona, Slovenia, EU

*Corresponding Author: Janez Špringer, Cankarjeva cesta 2, 9250 Gornja Radgona, Slovenia, EU

Abstract: The difference between the golden ratio and the hyperbolic-elliptic unit being expressed on the most favourable discrete surface has been discussed.

Keywords: Golden ratio, hyperbolic – elliptic unit, most favourable discrete surface

1. Introduction

The purpose of this paper is to bridge the mild difference between the golden ratio and the hyperbolicelliptic unit on the most favourable discrete surface [1].

2. THE SIMILARITY OF THE GOLDEN RATIO AND THE HYPERBOLIC-ELLIPTIC UNIT ON THE MOST FAVOURABLE DISCRETE SURFACE

The hyperbolic-elliptic unit being expressed on the most favourable discrete surface $s_{discrete}(1)$, only on the fourth decimal differs from the golden ratio ϕ . Since for

$$\frac{s_{discrete}(1)}{1} = 2 - \frac{1}{\sqrt{1 + \pi_{favourable}^{*2}}} = 2 - \frac{1}{\sqrt{1 + (1 + \sqrt{2})^2}} = 1,617\ 316\ 567\ 634\ 910\ 228\ \dots$$
 (1)

And

$$\phi = \frac{1 + \sqrt{5}}{2} = 1,618\ 033\ 988\ 749\ 894\ 848\ \dots \tag{2}$$

The next difference Δ is given:

$$\Delta = \phi - s_{discrete}(1) = \frac{1 + \sqrt{5}}{2} + \frac{1}{\sqrt{4 + 2\sqrt{2}}} - 2 = 0,000717421114984619933...$$
 (3)

3. Possible Bridge of the Difference between Golden Ratio and the Hyperbolicelliptic Unit on the most Favourable Discrete Surface

The difference Δ between the golden ratio and the hyperbolic-elliptic unit expressed on the most favourable discrete surface (3) could be overpassed with the help of expanding the concerned unit for $\frac{\Delta}{3}$ in each dimension of 3-dimensional space. For the spinning matter at the luminal speed c this could be done with the help of speed of expanding universe $\frac{\Delta}{3}c$. If so, the next exact speed of expanding universe can be offered:

$$v_{expanding\ universe} = \frac{\Delta}{3}c = \frac{\frac{1+\sqrt{5}}{2} + \frac{1}{\sqrt{4+2\sqrt{2}}} - 2}{3}c. \tag{4a}$$

What applying $c = 299792458 \frac{m}{s}$ yields

$$v_{expanding\ universe} = 71,692 \frac{km}{s}. (4b)$$

The speculated value is in accordance with a recent measurement of the Hubble constant H_0 from surface brightness fluctuation (SBF) resulting $H_0 = 73.3 \pm 0.7 \pm 2.4 \, km s^{-1} Mpc^{-1}$ where the error bars reflect the statistical and systematic uncertainties [2].

4. CONCLUSION

The mild deviation of the golden ratio from the hyperbolic-elliptic unit being expressed on the most favourable discrete surface offers the prediction of speed of the expanding universe which is in agreement with a recent measurement of the Hubble constant.

DEDICATION

To Kate DiCamillo and her quote

Figure 1. The ever-expanding universe [3]

REFERENCES

- [1] Janez Špringer (2023) "Golden Ratio on Discrete Surface" International Journal of Advanced Research in Physical Science (IJARPS) 10(1), pp.1-2, 2023.
- [2] John P. Blakeslee, Joseph B. Jensen, Chung-Pei Ma, Peter A. Milne, Jenny E. Greene. The Hubble Constant from Infrared Surface Brightness Fluctuation Distances. The Astrophysical Journal, 2021
- [3] https://www.idlehearts.com/870448/you-are-the-ever-expanding-universe-to-me

Citation: Janez Špringer (2023) "With Speed of Expanding Universe to Beauty" International Journal of Advanced Research in Physical Science (IJARPS) 10(2), pp.1-2, 2023.

Copyright: © 2023 Authors, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.