

Double Surface Characteristics of Water, Hydrogen Sulphide and Hydrogen Selenide

Janez Špringer*

Cankarjevacesta 2, 9250 GornjaRadgona, Slovenia, EU

*Corresponding Author: Janez Špringer, Cankarjeva cesta 2, 9250 Gornja Radgona, Slovenia, EU

Abstract: Double surface characteristics of water molecule, hydrogen sulphide molecule and hydrogen selenide molecule on double surface are presented.

Keywords: subtle bond, water, oxygen, hydrogen, hydrogen sulphide, sulphur, hydrogen selenide, selenium, exact and half-exact geometry

1. INTRODUCTION

In the previous paper the unstable subtle bond between hydrogen and oxygen atom in formic acid molecule was presented.[1] In this paper we will pay attention to the stable subtle bond between unequal atoms of the same molecule on the example of atoms which make up water, hydrogen sulphide and hydrogen selenide molecule. The needed data are taken from reference [2] toput them in the key formula, which relate the length on the elliptic surface *n* and the length on the average elliptic-hyperbolic surface s(n) as follows [3]:

$$s(n) = n \left(2 - \frac{1}{\sqrt{1 + \frac{\pi^2}{n^2}}}\right).$$
 (1)

2. THE WATER MOLECULE

Figure1. The water molecule

2.1. The Exact Distance between Hydrogen Atoms H in Water Molecule H₂O

The distance $d_{HH\ in\ H20}^{measured}$ between hydrogen atoms *H* in water molecule H_2O is 151.44 *pm* [2] which expressed in Compton wavelengths of the electron equals $d_{HH\ in\ H20}^{measured} = 62.416 \lambda_e$. The π -times longer orbit length of $s_{HH\ in\ H20}^{measured} = 196.085 \lambda_e$ is close to the geometrically stable orbit length of $s_{HH\ in\ H20}^{measured} = 196.085 \lambda_e$ is close to the geometrically stable orbit length of s (196 λ_e) = 196.025 λ_e .(1) And the doubled value $2s_{HH\ in\ H20}^{measured} = 392.170 \lambda_e$ is close to the geometrically stable orbit lengthofs (392 λ_e) = 392.013 λ_e .(1)We can propose that the number of stable bonding orbit *n* in this case should be $n_{HH\ in\ H20}^{proposed} = 196.$ If so the stable distance between hydrogen atoms Hin water molecule H_2O is of exact value $d_{HH\ in\ H20}^{exact} = 151.39 \ pm$.

2.2. The Exact Distance between Oxygen Atom O and Hydrogen Atom H in Water Molecule $\mathrm{H}_2\mathrm{O}$

The distance $d_{OH in H20}^{measured}$ between oxygen atom *O* and hydrogen atom *H* in water molecule H_2O is 95.78 pm [2] which expressed in Compton wavelengths of the electron equals $d_{OH in H20}^{measured} =$

39.476 λ_e . The π -times longer orbit length of $s_{OH in H2O}^{measured} = 124.016 \lambda_e$ is close to the geometrically stable orbit length of $s(124 \lambda_e) = 124.040 \lambda_e$.(1)And the doubled value $2s_{OH in H2O}^{measured} = 248.032 \lambda_e$ is close to the geometrically stable orbit lengthofs $(248 \lambda_e) = 248.020 \lambda_e$.(1) We can propose that the number of stable bonding orbit *n* in this case should be $n_{OH in H2O}^{proposed} = 124.$ If so the stable distance between oxygen atom *O* and hydrogen atom *H* in water molecule H_2O is of exact value $d_{OH in H2O}^{exact} = 95.80 pm$.

2.3. The Exact Angle φ_{HOH} in Water Molecule H₂O

With the help of the exact distance between hydrogen atoms $d_{HH in H20}^{exact} = 151.39 \, pm$ and the exact distance between oxygen and hydrogen atom $d_{OH in H20}^{exact} = 95.80 \, pm$ we canusing the cosine rule calculate the exact value of angle $\varphi_{HOH in H20}^{exact}$ in the water moleculeH₂O:

$$\cos\varphi_{HOH \text{ in } H20}^{exact} = 1 - \frac{1}{2} \left(\frac{HH}{OH}\right)^2 = 1 - \frac{1}{2} \left(\frac{151.39}{95.80}\right)^2 = -0.24863.$$
 (2a)

And

 $\varphi_{HOH in H2O}^{exact} = 104.40^{\circ}.$

Here, the exact value of angel is rounded to two decimal places.

3. THE HYDROGEN SULPHIDE MOLECULE

Figure 2. The hydrogen sulphide molecule

3.1. The Exact Distance between Hydrogen Atoms in Hydrogen Sulphide Molecule H₂S

The distance $d_{HH in H2S}^{measured}$ between hydrogen atoms *H* in hydrogen sulphide molecule H_2S is 192.33 *pm* [2] which expressed in Compton wavelengths of the electron equals $d_{HH in H2S}^{measured} = 79.269 \lambda_e$. The π -times longer orbit length of $s_{HH in H2S}^{measured} = 249.029 \lambda_e$ is close to the geometrically stable orbit lengthofs (249 λ_e) = 249.020 λ_e .(1)And the doubled value $2s_{HH in H2S}^{measured} = 498.058 \lambda_e$ is close to the geometrically stable orbit lengthofs (498 λ_e) = 498.010 λ_e . (1)We can propose that the number of stable bonding orbit *n* inthis case should be $n_{HH in H2S}^{proposed} = 249.1f$ so the stable distance between hydrogen atoms *H* in hydrogen sulphide molecule H_2S is of exact value $d_{HH in H2S}^{exact} = 192.32 pm$.

3.2. The Exact Distance between Sulphur Atom S and Hydrogen Atom H in Hydrogen Sulphide Molecule $\mathrm{H}_2\mathrm{S}$

The distance $d_{SH in H2S}^{measured}$ between sulphur atom Sand hydrogen atom H in hydrogen sulphide H_2S is 133.56 pm[2] which expressed in Compton wavelengths of the electron equals $d_{SH in H2S}^{measured} = 55.047 \lambda_e$. The π -times longer orbit length of $s_{SH in H2S}^{measured} = 172.934 \lambda_e$ is close to the geometrically stable orbit lengthofs $(173 \lambda_e) = 173.029 \lambda_e$. (1)And the doubled value $2s_{SH in H2S}^{measured} = 345.868 \lambda_e$ is close to the geometrically stable orbit length of $s(346 \lambda_e) = 346.014 \lambda_e$. (1)We can propose that the number of stable bonding orbit n in this case should be $n_{SH in H2S}^{proposed} = 173.If$ so the stable distance between sulphur atom Sand hydrogen atom H in hydrogen sulphide molecule H_2S is of exact value $d_{SH in H2S}^{exact} = 133.63 pm$.

3.3. The Exact Angle φ_{HSH} in Hydrogen Sulphide Molecule H₂S

With the help of the exact distance between hydrogen atoms $d_{HH in H2S}^{exact} = 192.32 \, pm$ and the exact distance between sulphur atom and hydrogen atom $d_{SH in H2S}^{exact} = 133.63 \, pm$ we can using the cosine rule calculate the exact value of angle $\varphi_{HSH in H2S}^{exact}$ in the hydrogen sulphide molecule H₂S:

(2b)

$$\cos\varphi_{HSH\ in\ H2S}^{exact} = 1 - \frac{1}{2} \left(\frac{HH}{SH}\right)^2 = 1 - \frac{1}{2} \left(\frac{192.32}{133.63}\right)^2 = -0,03565.$$
 (3a)

And

 $\varphi_{HSH in H2S}^{exact} = 92.04^{\circ}.$

(3*b*)

Here, the exact value of angel is rounded to two decimal places.

4. THE HYDROGEN SELENIDE MOLECULE

Figure3. Hydrogen selenide molecule

4.1. The Half-exact Distance between Hydrogen Atoms in Hydrogen Selenide Molecule H₂Se

The distance $d_{HH in H2Se}^{measured}$ between hydrogen atoms H in hydrogen selenide H_2Se molecule is 208.09 pm [2] which expressed in Compton wavelengths of the electronequals $d_{HH in H2Se}^{measured} = 85.764 \lambda_e$. The π -times longer orbit length of $s_{HH in H2Se}^{measured} = 269.435 \lambda_e$ is far from geometrically stable orbit length of $s(269 \lambda_e) = 269.018 \lambda_e$. And the doubled value $2s_{HH in H2Se}^{measured} = 538.870 \lambda_e$ is close to the geometrically unstable orbit lengthofs $(538.50 \lambda_e) = 538.501 \lambda_e$. We can propose that the stable subtle HH bonding orbit in this case is not present so the exact distance between HH atoms in the hydrogen selenide molecule H_2Se cannot be proposed and the value of measured distance $d_{HH in H2Se}^{measured} = 208.09 \ pm$ stays unchanged.

4.2. The Exact Distance between Selenium Atom Se and Hydrogen Atom H in Hydrogen Selenide Molecule H_2Se

The distance $d_{SeH in H2Se}^{measured}$ between selenium atom Seand hydrogen atom H in hydrogen selenide molecule H_2Se is 146.00 pm [2] which expressed in Compton wavelengths of the electron equals $d_{SeH in H2Se}^{measured} = 60.174 \lambda_e$. The π -times longer orbit length of $s_{SeH in H2Se}^{measured} = 189.041 \lambda_e$ is close to the geometrically stable orbit lengthofs $(189 \lambda_e) = 189.026 \lambda_e$. (1) And the doubled value $2s_{SeH in H2Se}^{measured} = 378.082 \lambda_e$ is close to the geometrically stable orbit length of $s(378 \lambda_e) =$ $378.013 \lambda_e$. (1)We can propose that the number of stable bonding orbit n in this case should be $n_{Se in H2Se}^{proposed} = 189.1$ f so the stable distance between selenium atom Seand hydrogen atom H in hydrogen selenide molecule H_2Se is of exact value $d_{SeH in H2Se}^{exact} = 145.99 \ pm$.

4.3. The Half-Exact Angle φ_{HSeH} in Hydrogen Selenide Molecule H₂Se

With the help of the measured distance between hydrogen atoms $d_{HH in H2Se}^{exact} = 208.09 \, pm$ and the proposed exact distance between selenium and hydrogen atom $d_{SeH in H2Se}^{exact} = 145.99 \, pm$ we can using the cosine rule calculate the half-exact value of angle $\varphi_{HSeH in H2Se}^{half-exact}$ in the hydrogen selenide molecule **H**₂**Se**:

$$\cos\varphi_{HSeH\ in\ H2Se}^{half\ -exact} = 1 - \frac{1}{2} \left(\frac{HH}{SeH}\right)^2 = 1 - \frac{1}{2} \left(\frac{208.09}{145.99}\right)^2 = -0.01584.$$
(4a)

And

$$\varphi_{HSeH \text{ in } H2Se}^{half -exact} = 90.91^{\circ}.$$
(4b)

Here, the half-exact value of angel is rounded to two decimal places.

5. **RESULTS**

The given results bring values of distances HH and HX as well as angles HXH

International Journal of Advanced Research in Physical Science (IJARPS)

5.1. The Distances HH

The distances HH between hydrogen atoms H in water molecule H_2O , in hydrogen sulphide molecule H_2S and in hydrogen selenide molecule H_2Se are collected in Table 1.

	Distance HH	Distance HH	Orbit HH	n	orbit s(n)	Distance HH
H_2X	(measured)	(measured)	(measured)			(proposed)
H_2O	151.44 pm	62.416 λ _e	196.085 λ _e	196	196.025λ _e	151.39 pm
H_2S	192.33 pm	79.269 λ _e	249.029 λ_e	249	249.020 λ_e	192.32 pm
H ₂ Se	208.09 pm	$85.764 \lambda_e$	$269.435 \lambda_e$	269	$269.018 \lambda_e$	/

Table1.*The distances HH between hydrogen atomsH in hydride molecules* H_2X *where* X = O, S *or Se*

A subtle bond between hydrogen atoms H can be noticed in water molecule H_2O as well as in hydrogen sulphide molecule H_2S , but seems to be absent in hydrogen selenide molecule H_2Se .

5.2. The distancesXH

The distances between hydrogen atom H and non-hydrogen atom X in water molecule H_2O , hydrogen sulphide molecule H_2S and hydrogen selenide molecule H_2S are collected in Table 2.

Table2. *The distances XH between hydrogen atom H and non-hydrogen atom X in hydride molecules* H_2X *where* X = O, *S or Se*

	Distance X	I Distance	XH	Orbit	XH	n	orbit s(n)	Distance	XH
H_2X	(measured)	(measured)		(measure	ed)			(proposed)	
H_2O	95.78 pm	39.476	λ_e	124.0	$16 \lambda_e$	124	124.040 λ_e	95.80 p	m
H_2S	133. 56 pm	55.047	λ_e	172.93	$34 \lambda_e$	173	$173.029 \lambda_e$	<i>133 . 63</i>	pm
H ₂ Se	146 .00 pm	60.174	λ_e	189.04	$1\lambda_e$	189	189.026 J _e	145 . 99	pm

A subtle bond between a hydrogen atom H and a non-hydrogen atom X can be noticed in all three hydrides: water molecule H_2O , hydrogen sulphide molecule H_2S , and hydrogen selenide molecule H_2Se . **5.3. The angles HXH**

Proposed exact angle values between atoms in watermolecule H_2Oand hydrogen sulphide molecule H_2S as well as half-exact angle value in hydrogen selenide molecule H_2Se are collected in Table3.

Lable3. Proposed angle values in hydride molecules H_2X where $X = O$, S or Se (oxygen, sulphur or selenium)					
H_2X	Angle φ_{HXH}	Status			
H ₂ O	<i>104.40</i> °	exact			
H_2S	92.04°	exact			
H ₂ Se	90.91°	half-exact			

An exact angle value can be proposed in water molecule H_2O as well as hydrogen sulphide molecule H_2S , and a half-exact one in hydrogen selenide molecule H_2Se . The values in Table 3 are rounded to two decimal places.

6. INTERESTING COINCIDENCE

 H_2Se molecule, which is larger than H_2S molecule and does not form intramolecular subtle bond between hydrogen atoms (see section 4.1.), as H_2S does (see section 3.1.),may contribute to the stronger intermolecular bonds of H_2Se molecules compared to H_2S molecules, and as a result, H_2Se exhibits a higher boiling point than H_2S does.

7. CONCLUSION

Hydrides from the sixth group of elements have interesting double surfacecharacteristics **DEDICATION**

To Socrates and his quote[4]

Figure4. Wisdom begins in wonder

REFERENCES

[1] Janez Špringer (2023) "Short-livedSubtle Bond ofFormicAcid" International Journal of Advanced Research in PhysicalScience (IJARPS) 10(11), pp.1-6, 2023.

[2] CCCBDB listing of experimental geometry data page 2 (nist.gov). Retrieved November 2023

[3] Janez Špringer (2023)"Subtle Bond of Carbon Tetrafluoride (Yin yang)"International Journal of Advanced Research in Physical Science (IJARPS) 10(9), pp.15-18, 2023.

[4] https://www.brainyquote.com/quotes/socrates_101211. Retrieved November 2023

Citation:Janez Špringer (2023) "Double Surface Characteristics of Water, Hydrogen Sulphide and Hydrogen Selenide " International Journal of Advanced Research in Physical Science (IJARPS) 10(11), pp.7-11, 2023.

Copyright: © 2023 Authors, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.