Golden Ratio on Discrete Surface

Janez Špringer*
Cankarjeva cesta 2, 9250 Gornja Radgona, Slovenia, EU

*Corresponding Author: Janez Špringer, Cankarjeva cesta 2, 9250 Gornja Radgona, Slovenia, EU

Abstract

The golden ratio on the discrete surface has been discussed.

Keywords: Golden ratio, average hyperbolic - elliptic unit, continuous and discrete surface, pseudo pi

1. INTRODUCTION

In the previous paper [1] the similarity between golden ratio $\phi=\frac{1+\sqrt{5}}{2} \approx 1,618 \ldots$ and the average hyperbolic - elliptic unit being expressed on the continuous surface $s_{\text {continuous }}(1)=2-\frac{1}{\sqrt{1+\pi^{2}}} \approx$ 1,696 \ldots was recognized.
The subject of interest of this paper is to compare the golden ratio and the average hyperbolic elliptic unit being expressed on the discrete surface, too. Here the path is not concluded on the circumference of a circle [2] but on the average perimeter of the most favourable polygons.

2. The PSEUDO PI ($\boldsymbol{\pi}^{*}$)

The perimeter of n-sided regular polygon $2 \pi^{*} R$ is shorter than the circumference of a circle $2 \pi R$ since pseudo pi, denoted π^{*}, of any n-sided polygon is smaller than π of a circle [3]:
$\pi^{*}=n \sin \frac{\pi}{n}<\pi$ for $n<\infty$.
π^{*} of the first three regular polygons are collected in Table 1.
Table1. π^{*} of the first three regular polygons compared to π of a circle (∞-sided polygon)

Name	Number of sides n	π^{*}
digon	2	2
triangle	3	$3 \sin \frac{\pi}{3}=3 \frac{\sqrt{3}}{2}=2,598$
square	4	$4 \sin \frac{\pi}{4}=2 \sqrt{2}=2,828 \ldots$
circle	∞	π

We can see that π^{*} rises with number of polygon sides n becoming equal to π when a polygon at $n=$ ∞ converts to a circle. The increase of π^{*} is gradually smaller. Consequently the average π^{*} of two neighbour even-sided polygons is smaller than π^{*} of the odd-sided polygon in the middle between them. The smallest is the average pi of digon ($n=2$) and square $(n=4)$ since it is smaller than π^{*} of triangle ($\mathrm{n}=3$):
$\overline{\pi_{\text {minimal }}^{*}}=\frac{\pi_{\text {digon }}^{*}+\pi_{\text {square }}^{*}}{2}=2,414 \ldots<\pi_{\text {triangle }}^{*}=2,598 \ldots$.
It enables the smallest and thus most favourable path concluded on the average perimeter $2 \overline{\pi_{\text {minimal }}^{*}} R$ of the corresponding polygons on the discrete surface:
$\pi_{\text {favourable }}^{*}=\overline{\pi_{\text {minimal }}^{*}}=\frac{\pi_{\text {digon }}^{*}+\pi_{\text {square }}^{*}}{2}=\frac{2+2 \sqrt{2}}{2}=1+\sqrt{2}$.

3. π^{*} and the Average Hyperbolic-Elliptic Unit

The most favourable π^{*} gives the next ratio of the average hyperbolic - elliptic unit $s(1)$ to elliptic unit 1 being expressed on the most favourable discrete surface:

$$
\begin{equation*}
\frac{s_{\text {discrete }}(1)}{1}=2-\frac{1}{\sqrt{1+\pi_{\text {favourable }}^{* 2}}}=2-\frac{1}{\sqrt{1+(1+\sqrt{2})^{2}}}=2-\frac{1}{\sqrt{4+2 \sqrt{2}}}=1,6173 \ldots \tag{4}
\end{equation*}
$$

4. The Average Hyperbolic-Elliptic Unit Being Expressed on the Discrete Surface COMPARED TO THE GOLDEN RATIO

The average hyperbolic-elliptic unit being expressed on the most favourable average discrete surface $s_{\text {discrete }}(1)=2-\frac{1}{\sqrt{4+2 \sqrt{2}}}=1,6173 \ldots$ only on the fourth decimal differs from the golden ratio $\phi=$ $\frac{1+\sqrt{5}}{2}=1,6180 \ldots$

Since:
$\phi-s_{\text {discrete }}(1)=1,6180-1,6173=0,0007$.

5. The Average Hyperbolic-Elliptic Unit Being Expressed on the Discrete as well as Continuous Surface Compared to the Golden Ratio

$s_{\text {discrete }}(1)=1,6173<\phi=1,6180<s_{\text {continuous }}(1)=1,6967$.
The golden ratio lies within the interval defined by the discrete and the continuous unit.

6. CONCLUSION

The golden ratio almost equals the average hyperbolic - elliptic unit if the latter is expressed on the most favourable average discrete surface which is characterized by the value of pseudo pi yielding $\pi_{\text {favourable }}^{*}=1+\sqrt{2}$.

DEDICATION

To Mahatma Gandhi and his quote: "True beauty after all consists in purity of heart."

> "True beauty after all consists in purity of heart. "

Mahatma Gandhi

(The Story of my Experiments with Truth)

Figure1. About true beauty [4]

REFERENCES

[1] Janez Špringer (2022) "Golden Background of Beauty" International Journal of Advanced Research in Physical Science (IJARPS) 9(12), pp.9-11, 2022.
[2] Špringer J. Fine Structure Constant as a Mirror of Sphere Geometry. Progress in Physics, 2013, v. 1, 12-14.
[3] https://www.mathsisfun.com/geometry/regular-polygons.html
[4] https://kwize.com/quote/3336

Citation: Janez Špringer (2023) "Golden Ratio on Discrete Surface" International Journal of Advanced Research in Physical Science (IJARPS) 10(1), pp.1-2, 2023.

Copyright: © 2023 Authors, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

