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1. INTRODUCTION 

In the previous paper [1] the similarity between golden ratio 𝜙 =
1+√5

2
≈ 1,618 … and the average 

hyperbolic – elliptic unit being expressed on the continuous surface 𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠(1) = 2 −
1

√1+𝜋2
≈

1,696 … was recognized. 

The subject of interest of this paper is to compare the golden ratio and the average hyperbolic – 

elliptic unit being expressed on the discrete surface, too. Here the path is not concluded on the 

circumference of a circle [2] but on the average perimeter of the most favourable polygons. 

2. THE PSEUDO PI (𝝅∗) 

The perimeter of n-sided regular polygon 2𝜋∗𝑅 is shorter than the circumference of a circle 2𝜋𝑅 since 

pseudo pi, denoted 𝜋∗, of any n-sided polygon is smaller than 𝜋 of a circle [3]: 

𝜋∗ = 𝑛𝑠𝑖𝑛
𝜋

 𝑛
< 𝜋 𝑓𝑜𝑟 𝑛 < ∞.                                                                                                                                               (1) 

𝜋∗ of the first three regular polygons are collected in Table 1. 

Table1. 𝜋∗ of the first three regular polygons compared to 𝜋 of a circle (∞-sided polygon) 

Name Number of sides n 𝜋∗ 

digon 2 2 

triangle  

3 3 𝑠𝑖𝑛
𝜋

3
= 3

√3

2
= 2,598 

square 4 4 sin
𝜋

4
= 2 √2 = 2,828 … 

circle ∞ 𝜋 

We can see that 𝜋∗ rises with number of polygon sides 𝑛 becoming equal to 𝜋 when a polygon at 𝑛 =
∞ converts to a circle. The increase of 𝜋∗is gradually smaller. Consequently the average 𝜋∗ of two 

neighbour even-sided polygons is smaller than 𝜋∗  of the odd-sided polygon in the middle between 

them. The smallest is the average pi of digon (n=2) and square (n=4) since it is smaller than  𝜋∗ of 

triangle (n=3): 

𝜋𝑚𝑖𝑛𝑖𝑚𝑎𝑙
∗  =

𝜋𝑑𝑖𝑔𝑜𝑛
∗ +𝜋𝑠𝑞𝑢𝑎𝑟𝑒

∗

2
= 2,414 … < 𝜋𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒

∗ = 2,598 ….                                                                                   (2) 

It enables the smallest and thus most favourable path concluded on the average perimeter 2𝜋𝑚𝑖𝑛𝑖𝑚𝑎𝑙
∗ 𝑅 

of the corresponding polygons on the discrete surface: 

𝜋𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒
∗ = 𝜋𝑚𝑖𝑛𝑖𝑚𝑎𝑙

∗ =
𝜋𝑑𝑖𝑔𝑜𝑛

∗ + 𝜋𝑠𝑞𝑢𝑎𝑟𝑒
∗

2
=

2 + 2√2

2
= 1 + √2.                                                                            (3) 

3. 𝝅∗
AND THE AVERAGE HYPERBOLIC-ELLIPTIC UNIT 

The most favourable 𝜋∗gives the next ratio of the average hyperbolic – elliptic unit 𝑠(1) to elliptic 

unit 1 being expressed on the most favourable discrete surface: 
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𝑠𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒(1)

1
= 2 −

1

√1 + 𝜋𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒
∗2

=  2 −
1

√1 + (1 + √2)
2

=  2 −
1

√4 + 2√2
= 1,6173 …                           (4) 

4. THE AVERAGE HYPERBOLIC-ELLIPTIC UNIT BEING EXPRESSED ON THE DISCRETE SURFACE 

COMPARED TO THE GOLDEN RATIO 

The average hyperbolic-elliptic unit being expressed on the most favourable average discrete surface 

𝑠𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒(1) = 2 −
1

√4+2√2
= 1,6173 … only on the fourth decimal differs from the golden ratio 𝜙 =

1+√5

2
= 1,6180 …  

Since: 

𝜙 − 𝑠𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒(1) = 1,6180 − 1,6173 = 0,0007.                                                                                                             (5) 

5. THE AVERAGE HYPERBOLIC-ELLIPTIC UNIT BEING EXPRESSED ON THE DISCRETE AS WELL 

AS CONTINUOUS SURFACE COMPARED TO THE GOLDEN RATIO 

𝑠𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒(1) = 1,6173 <  𝜙 = 1,6180 < 𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠(1) = 1,6967.                                                                           (6) 

The golden ratio lies within the interval defined by the discrete and the continuous unit. 

6. CONCLUSION 

The golden ratio almost equals the average hyperbolic – elliptic unit if the latter is expressed on the 

most favourable average discrete surface which is characterized by the value of pseudo pi 

yielding 𝜋𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒
∗ = 1 + √2. 

DEDICATION 

To Mahatma Gandhi and his quote: “True beauty after all consists in purity of heart.” 

 

Figure1. About true beauty [4] 
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