

Adsorption Studies of Cu²⁺ using Tea Leaves and Tea Fibre (*Camellia Sinensis*) as Adsorbents

Emmanuel E. Etim^{*1}, James E. Asuquo², Godwin O. Ogofotha¹, Michael C. Nzubechukwu¹

¹Department of Chemical Sciences, Federal University Wukari, Nigeria ²Department of Chemistry, University of Uyo, Nigeria

***Corresponding Author:** *Emmanuel E. Etim*, Department of Chemical Sciences, Federal University Wukari, Nigeria

Abstract: Pollution of aquatic environments is in geometric increase and it is becoming a serious environmental problem, this pollution however includes heavy metal and they tend to threatens aquatic ecosystems, aquaculture, and directly or indirectly human health. These tend to pose danger due to their relatively high and persistent nature and accumulation and bio magnifications along the aquatic food chain. Thus this research work focuses on the removal of Cu^{2+} from aqueous solution using Tea Leaves and Tea Fibre (Camellia Sinensis) as Adsorbents. From the result of this experiment, the above named adsorbent is very efficient as it tend to 99.9% removal of the heavy metal; however it is found that the variation of pH has a negligible effect in the % removal of Cu^{2+} from aqueous solution using tea fiber and leaves, it clearly shows that tea fibre and tea leaves are good adsorbent for the removal of Cu^{2+} from aqueous solution. Therefore tea fibre and tea leaves can be employed in treatment of waste water containing Cu^{2+} for effective removal.

1. INTRODUCTION

Pollution of aquatic environments is in geometric increase and it is becoming a serious environmental problem, this pollution however includes heavy metal and they tend to threatens aquatic ecosystems, aquaculture, and directly or indirectly human health (Etim *et al.*, 2019a,b). These tend to pose danger due to their relatively high and persistent nature and accumulation and bio magnifications along the aquatic food chain (Fu *et al.*, 2014). The term "heavy metals" is often used when addressing stable and potentially toxic metals with an atomic density greater than 4g/cm³ (Etim *et al.*, 2019c,d; Adelagun *et al.*, 2021; Etim et al., 2017).

Biosorption in recent times are known to be an alternative technique for the uptake of toxic metals including Cu^{2+} from wastewater (Babarinde *et al.*, 2008). However, it is a relatively new technology that has important use in the removal of low-level concentration of toxic metal (Akhtar *et al.*, 2004). Biosorption is a new technology that can be employ in the removal of metal ions from aqueous solutions, and this serve to replace the old conventional methods such as reduction or oxidation, ion exchange, filtration, electrochemical treatment, membrane technology, evaporation recovery, chemical precipitation, chemical lime coagulation and solvent extraction (Anayurt, 2009). The mechanism of the biosorption process has been explained in terms of the reaction between anionic groups present in the biomasses and the cationic metal ions (Etim *et al.*, 2019a,c).

The tea plant is the species of plant whose leaves and leaf buds are used to produce tea. It is termed as a low cost adsorbent since it requires little processing, it is abundant in nature, and a by-product from tea processing as stated by (Etim *et al.*, 2022; Bajpai *et al.*, 201; Itodo and Etim, 20150). In this research work, the tea fibre and tea leaves from tea plant are used as an absorbent.

This research work focus on the removal of Cu^{2+} from aqueous solution using tea fibre and tea leaves as an absorbent.

2. METHODOLOGY

2.1. Sample Collection and Preparation

The tea leaves (*Camellia Sinensis*) for this research work was collected from Kakara High Land Tea, Sardauna L.G.A., Taraba State, Nigeria. They were collected into in the early hours of the day and then washed properly to remove moist and dirt, after which they were rinsed with distilled water. The sample was then properly dried at room temperature after which the sample was pulverized and sieved with 150mm micron.

2.2. Preparation of Stock Solution

Copper (II) oxide of 0.1M concentration was prepared and used all through the experimental work. 7.95g of copper (II) oxide powder were dissolved in 1000 mL of the stock solution.

2.3. Preparation of Different Concentrations of Metal Solutions

In this research work, a total of 4 different concentrations of copper (II) oxide solutions were prepared: 20mg/l, 30mg/l, 40mg/l and 50mg/l. Subsequently, the copper solutions with different concentrations and 2g of biosorbent materials were put into an orbital shaker at different temperatures (between $40^{\circ}c - 70^{\circ}c$). The rotational speed of shaker in all the experiments was kept constant at 220rpm. This experiment was performed in duplicate and the best result was used. Lastly, the solution was filtered to prepare samples for the measurements of the metal ion concentration (Etim *et al.*, 2022 and Asuquo *et al.*, 2019)

2.4. Effect of Initial Concentration

Metal solution of 50mL, containing different concentrations; 20mg/l, 30mg/l, 40mg/l and 50mg/l were measured into different conical flasks. 2g of the biosorbent were dispersed in each of them, the flasks were corked and the mixture agitated with the aid of a shaker for 1 hour to attain equilibrium, the slurries were then filtered using whatman filter paper and a plastic funnel, the filtrate were kept in well labeled containers and thereafter the concentrations of the resulting filtrate were determined using Atomic absorption spectrometer. (Etim *et al.*, 2022) and (Entezari, *et al.*, 2009)

2.5. Effect of pH

The effects of pH on the biosorption of metal ions were carried out within the range that would not be influenced by the metal precipitated (Pavasant, *et al.*, 2006). Experiments were conducted at 30°C to study the effect of initial solution pH on the biosorption of copper (II) oxide by contacting 2g of the *camellia sinensis* with 50mL of the metal ion solution in a glass tube. The pH of each of the solutions were adjusted to the desired value with 0.1M sodium hydroxide and /or 0.1M nitric acid. The studies were conducted at pH values of 2, 3, 5 and 7. The glass tubes containing the mixture were left in a water bath for 24 h. The biomass were removed from the solution by decantation and the residual the metal concentration in the solution were analyzed

2.6. Effect of Biosorbent Dosage

Biosorbent of 1g, 2g, 3g, and 4g were weighed into different conical flasks. 50ml of metal solution were measured into each of the conical flasks and labeled. The flasks were corked and the mixture agitated with the aid of a shaker for 1hour to attain equilibrium, the slurries were then filtered using Whatman filter paper and a plastic funnel, the filtrate were kept in well labeled containers and thereafter the concentrations of the resulting filtrate were determined using Atomic absorption spectrometer. (Reddad, *et al.*, 2002 and Etim, *et al.*, 2022)

2.7. Isotherms Studies of Biosorption

The experimental data will be fitted using Langmuir and Freundlich (Hall et al. 1966)

Freundlich Isotherm

Freundlich isotherm describes an empirical relationship that exists between the adsorption of solute and the surface of the adsorbent. The empirical equation proposed by Freundlich is:

$$logq_e = logK_f + \frac{1}{n}logC$$

(2.1)

Where,

K_f and n are coefficients;

qe is the weight adsorbed per unit weight of adsorbent

C is the concentration of the metal solution

taking logarithm and rearranging: logqe

$$q = K_f C^{1/n} \tag{2.2}$$

The constant K_f is an approximate indicator of adsorption capacity, while 1/n is a function of the strength of adsorption (Voudrias et al. 2002).

Langmuir Isotherm

The Langmuir isotherm equation is written as:

$$\frac{C_e}{q_e} = \frac{1}{q_{max}K_L} + \frac{C_e}{q_{max}}$$
(2.3)

Where,

Ce is the equilibrium concentration of adsorbate,

qe is the amount of metal adsorbed per gram of the adsorbent at equilibrium.

 q_m and b are Langmuir constants related to adsorption capacity and rate of adsorption, respectively. The values of q_m and b were calculated from the slope and intercept of the Langmuir plot of C_e versus C_e/q_e (Langmuir 1918).

3. RESULTS AND DISCUSSION

3.1. Effect of Initial Concentration in the Removal of Cu²⁺ from Aqueous Solution using Tea Fibre and Tea Leaves

Table 3.1 and 3.2 shows clearly the effect of Initial concentration in the removal of Cu^{2+} from aqueous solution using tea fibre and tea leaves respectively. It was observed that as the initial concentration increases, the % removal of Cu^{2+} also increases when tea fibre and tea leaves were used as adsorbent, this shows clearly that the more the initial concentration of an aqueous solution, the more Cu^{2+} can be removed using the above named adsorbent.

In similar manner, figure 3.1 and 3.2 is a graph showing the effect of concentration in the removal of Cu^{2+} from aqueous solution using tea fibre and tea leaves respectively

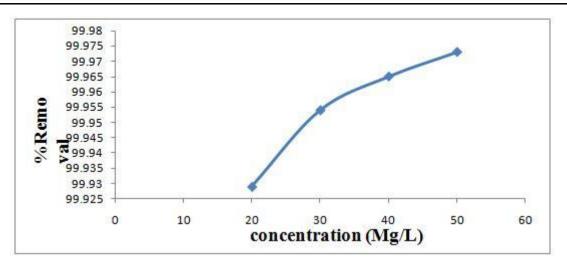
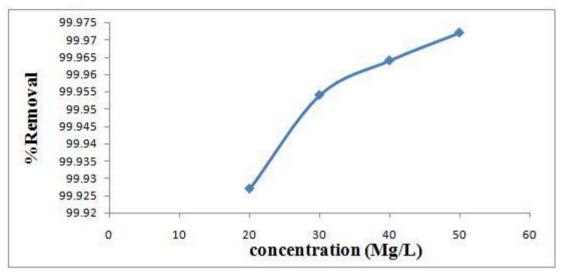

Initial conc.	Final conc. Mg/L	% Removal	Metal uptake	
(C _i)	(C _f)	(% R)	(q _e)	
20.00	0.01418	99.929	0.49965	
30.00	0.01365	99.954	0.74965	
40.00	0.01391	99.965	0.99965	
50.00	0.01364	99.973	1.24966	

Table3.1. Initial concentration values for the removal of Cu^{2+} from aqueous solution using tea fibre


Table3.2. Initial concentration values for the removal of Cu^{2+} from aqueou	is solution using tea leaves
--	------------------------------

Initial conc.	Final conc. Mg/L	% Removal	Metal uptake	
(Ci)	(C f)	(%R)	(q e)	
20.00	0.01445	99.927	0.49963	
30.00	0.01364	99.954	0.74966	
40.00	0.01418	99.964	0.99965	
50.00	0.01377	99.972	1.24965	

Adsorption Studies of Cu²⁺ using Tea Leaves and Tea Fibre (Camellia Sinensis) as Adsorbents

Figure3.1. Graph of initial concentration showing the % removal of Cu^{2+} using tea fibre

3.2. Effect of pH in the Removal of Cu²⁺ from Aqueous Solution using Tea Fibre and Tea Leaves

Table 3.3 and 3.4 shows the effect of pH in the removal of Cu^{2+} from aqueous solution using tea fibre and tea leaves respectively. It was observed that the pH of the aqueous solution have negligible effect in the % removal of Cu^{2+} when tea fibre and tea leaves were used as adsorbent, this shows clearly that the pH of an aqueous solution may not affect the % removal of Cu^{2+} using the above named adsorbent.

Similarly, figure 3.3 and 3.4 is a graph showing the effect of pH in the removal of Cu^{2+} from aqueous solution using tea fibre and tea leaves respectively

Table3.3. *pH* values for the removal of Cu^{2+} from aqueous solution using tea fibre

	1 5	<i>J J</i>	1	0 5	
pН	Initial conc.	Final conc. Mg/L	% Removal	Metal uptake	
	(C _i)	(C _f)	(%R)	(q _e)	
2.00	40.00	0.01445	99.964	0.99963	
3.00	40.00	0.01377	99.965	0.99965	
5.00	40.00	0.01377	99.965	0.99965	
7.00	40.00	0.01431	99.964	0.99964	

Table3.4. p.	H values for th	e removal of Cu²	+ from aqueous	solution using tea leaves
---------------------	-----------------	------------------	----------------	---------------------------

pН	Initial conc.	Final conc. Mg/L	% Removal	Metal uptake	
	(C i)	(C f)	(%R)	(q _e)	
2.00	40.00	0.01404	99.965	0.99965	
3.00	40.00	0.01377	99.965	0.99966	
5.00	40.00	0.01445	99.964	0.99964	
7.00	40.00	0.01404	99.965	0.99965	

Adsorption Studies of Cu²⁺ using Tea Leaves and Tea Fibre (Camellia Sinensis) as Adsorbents

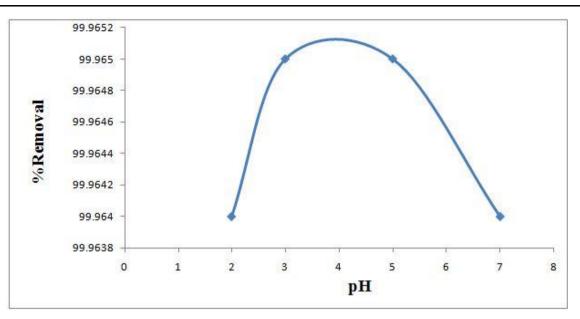
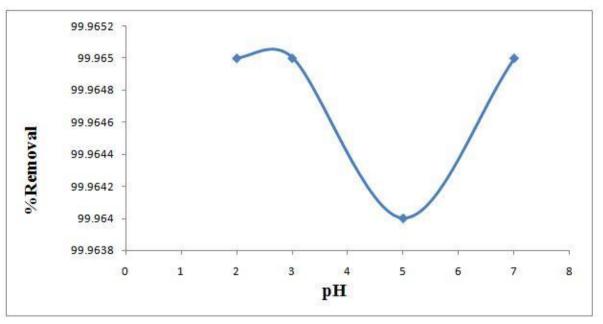
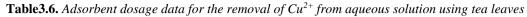



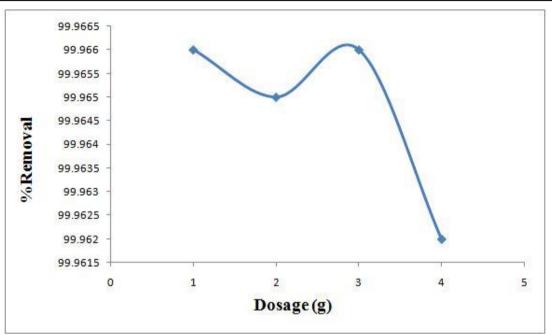
Figure 3.3. Graph of pH indicatin % removal of copper using tea fibre (Camellia Sinensis).

Figure3.4. *Graph of pH indicating % removal of copper using tea leaves*

3.3. Effect of Adsorbent Dosage in the Removal of Cu²⁺ from Aqueous Solution using Tea Fibre Tea Leaves

Table 3.5 and 3.6 shows the effect of adsorbent dosage in the removal of Cu^{2+} from aqueous solution using tea fibre and tea leaves respectively. A decrease of % removal was obseved at a high adsorbent dosage when tea fibre and tea leaves were used as adsorbent, this shows clearly that at high adsorbent dosage, the % removal of Cu^{2+} will be reduced using the above named adsorbent.


Similarly, figure 3.5 and 3.6 is a graph showing the effect of adsorbent dosage in the removal of Cu^{2+} from aqueous solution using tea fibre and tea leaves respectively


Table3.5. Adsorbent dosage data for the removal of Cu^{2+} from aqueous solution using tea fibre

Adsorbent dosage(g)	Initial conc. (C _i)	Final conc. Mg/L (C _f)	% Removal (%R)	Metal uptake (qe)	
1.00	40.00	0.01377	99.966	1.99931	
2.00	40.00	0.01404	99.965	0.99965	
3.00	40.00	0.01377	99.966	0.66644	
4.00	40.00	0.01526	99.962	0.49981	

Adsorption Studies of Cu²⁺ using Tea Leaves and Tea Fibre (Camellia Sinensis) as Adsorbents

Adsorbent dosage(g)	Initial conc. (C _i)	Final conc. Mg/L (C _f)	% Removal (%R)	Metal uptake (q _e)	
1.00	40.00	0.01364	99.966	1.99932	
2.00	40.00	0.01364	99.966	0.99966	
3.00	40.00	0.01431	99.964	0.66643	
4.00	40.00	0.01364	99.966	0.49983	

Figure3.5. Graph showing adsorbent dosage for % removal of Cu^{2+} using tea fibre

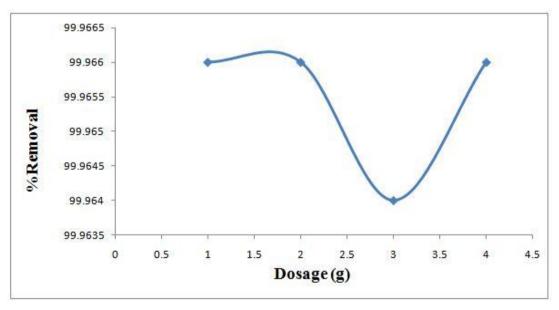


Figure3.6. Graph showing adsorbent dosag for % removal of copper using tea leaves

3.4. Freundlich Isotherm and Langmuir Isotherm

The adsorption constants and the correlation coefficients for the two isotherm models are presented in table 3.7 and 3.8 where K_L and K_f is the adsorption capacity and q_{max} and 1/n the adsorption intensity. This indicate the relative distribution of energy and heterogeneity of adsorbate sites for Langmuir and Freundlich model and considering the distribution, the Langmuir model described the adsorption process better than Freundlich model. The R² values for the two models also indicate Langmuir to be better. The R_L values which are called the separation factor explain the adsorption to be irreversible.

International Journal of Advanced Research in Chemical Science (IJARCS)

Conc. (Mg/L)	logCe (leaves)	logq _e (leaves)	logCe (fibre)	logqe (fibre)	
20	-1.8401	-0.3013	-1.8483	-0.3013	
30	-1.8652	-0.1251	-1.8652	-0.1251	
40	-1.8483	-0.0002	-1.8567	-0.0002	
50	-1.8611	0.0968	-1.8652	0.0968	

 Table3.7. Freundlich isotherm data for tea leaves and fibre

Table3.8. Langmuir isotherm data for tea leaves and fibre

Conc. (Mg/L)	Ce/ qe	Ce	Ce/ qe	Ce	
	(leaves)	(leaves)	(fibre)	(fibre)	
20	0.029	0.01445	0.028	0.01418	
30	0.018	0.01364	0.018	0.01364	
40	0.014	0.01418	0.014	0.01391	
50	0.011	0.01377	0.012	0.01364	

Table3.9. Isotherm parameters for the adsorption of Cu^{2+} using tea fibre and leave at different concentrations

Isotherm	Parameters	Biosorbent
Langmuir	q _{max} 21.549	Fibre
	K _L -0.2803	
	R^2 0.6124	
	R _L 0.9962	
Freundlich	1/n -15.259	
	K _f -28.446	
	R^2 0.5165	
Langmuir	q _{max} 14.005	Leave
	K _L 0.1782	
	R^2 0.4397	
	R _L 0.9961	
Freundlich	1/n -8.3968	
	K _f -15.647	
	R^2 0.3192	

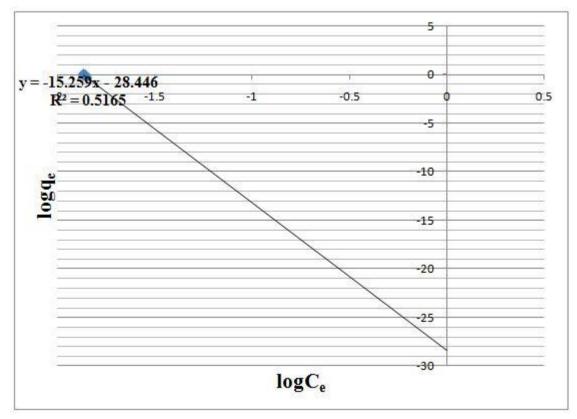


Figure 3.7. Freundlich isotherm graph for tea fibre

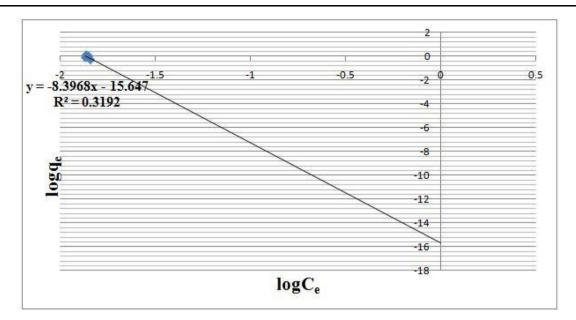


Figure 3.8. Freundlich isotherm graph for tea leave

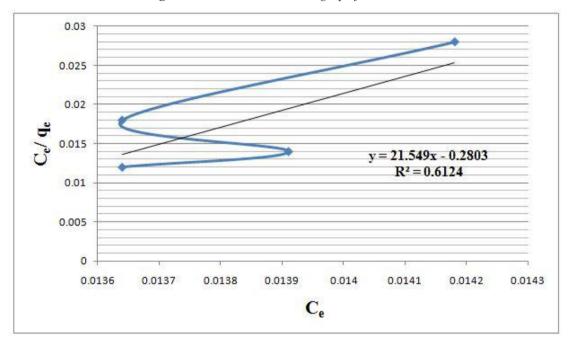


Figure 3.9. Langmuir isotherm graph for tea fibre

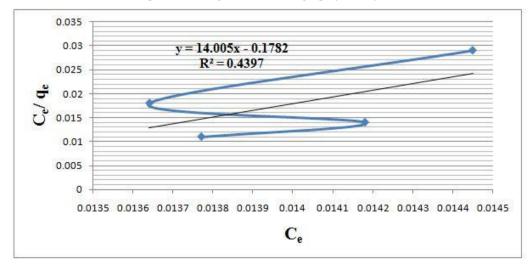


Figure 3.10. Langmuir isotherm graph for tea leave

International Journal of Advanced Research in Chemical Science (IJARCS)

4. CONCLUSION

From the results obtained in this show that tea fibre and tea leaves can be used can good adsorbents for the removal of Cu^{2+} in the treatment of domestic wastewaters and industrial effluents.

The maximum percentage removal of Cu^{2+} was found to 99.97% in both adsorbents. This further attests to the high the high accuracy and efficiency of the adsorbent used. In conclusion, since both the tea fibre and tea leaves are found to be good biosorbents which are occur naturally and are environmentally friendly, these adsorbents should be adopted in the treatment of wastewaters and industrial effluents.

REFERENCES

- Adelagun ROA, Etim EE, Ushie OA, Kamba AE, Aikhoje EF (2021). Biosorptive Removal of Hexavalent Chromium by Rice Husk Ash and Silica from Aqueous Solution. Chemistry and Materials Research, 13(1): 11-18. DOI: 10.7176/CMR/13-1-02
- Akhtar N, Iqbal J, Iqbal M, (2004) Removal and recovery of nickel (II) from aqueous solution by loofa sponse-immobilized biomass of *Chlorella sorokiniana: Characterization Studies*. Journal of Hazardous Materials 108 (2): 85-94
- Anayurt, R.A., Sari, A., and Tuzen, M., Equilibrium, Thermodynamic and Kinetic Studies on Biosorption of Pb(II) and Cd(II) from Aqueous Solution by Macrofungus (Lactariusscrobiculatus) Biomass. *Chemical Engineering Journal*. 2009, 151:255-261
- Asuquo, J. E., Ugwuja, D. I., Etim, E. E (2017) Effect of Time on the Adsorption of Metallic Soaps onto Hematite in Aqueous Media *International Journal of Modern Chemistry*, 9(1): 69-77
- Babarinde A.N, Babalola J.O, and Adegboye K.A (2008) Kinetic, Isotherm, and Thermodynamics Studies of Biosorption of Cadnium (II) by Snail (*Lymnaea rufescens*) Shell. Journal of Applied Sciences Research 4 (11): 1420-1427.
- Bajpai (2010). Determination of the biosorption heats of heavy metal ions on Zoogloea and Rhizopus arrhizus. *Biochem. Eng. J.*, 6: 145-151.
- Enteyari (2009). Biosorption of reactive dye from textile wastewater by non-viable biomass of Aspergillus niger and Spirogyra sp., Science Direct. *Bioresource Technology* 99: 6631-6634.
- Etim, E. E., Itodo, A. U., Mbakara, I. E. 2017. Isotherm Studies of Mono, Divalent and Trivalent Cationic Soaps onto Derived Fe2O3 Adsorbent Surface. International Journal of Advanced Research in Chemical Science, 4 (6):13-22. DOI: http://dx.doi.org/10.20431/2349-0403.0406002
- Etim, E. E., Asuquo J.E, Atoshi A.T, Ngana O.C (2022). Kinetic Studies of the Biosorption of Cr²⁺ and Cd²⁺ ion using Tea leaves. *Journal, Chemical Society of Nigeria* 47(1): 075-085
- Etim, E. E., Julius, J., Godwin, O. E., and Ekpenyon E. O. (2019a), Kinetic Studies of the Biosorption of Lead and Zinc using Tea Leaves (*Cammelia Sinensis*) as Adsorbent. *International journal of Environmental and Bioenergy*, 14 (1), 83-93.
- Etim, E. E.; David, D.' Godwin, O. E (2019b). Kinetic Studies of the Biosorption of Zn and Pb (ii) from Solution Using Tea Fibre. *International Journal of Modern Chemistry*, 11(1): 57-72
- Etim, E. E, Etiowo George Ukpong, Effiong O. Ekpenyong, Godwin Oko E (2019c). Comparative Studies of the Biosorption of Heavy Metals (Zinc and Lead) using Tea Leaves (Cammelia Sinensis) and Tea Fibre as Adsorbents. International Journal of Advanced Research in Chemical Science (IJARCS) 6:9, 20-27. DOI: http://dx.doi.org/10.20431/2349-0403.0609003
- Etim, E. E, Dennis, D, Godwin Oko E, (2019d). Kinetic Studies of the Biosorption of Zn and Pb (ii) from Solution Using Tea Fibre. International Journal of Modern Chemistry, 2019, 11(1): 57-72.
- Fu, J., Zhao, C., Luo, Y., Liu, C., Kyzas, G. Z., Luo, Y., Zhu, H. (2014). Heavy metals in surface sediments of the Jialu River, China: their relations to environmental factors. *Journal of Hazardous Materials*, 270:102-9. doi:10.1016/j.jhazmat.2014.01.044
- Hall K.R, Eagleton L.C, Acrivos A and Vermeulen T. (1966) Pore- and Solid- Diffusion Kinetics in fixed-Bed Adsorption under Constant-Pattern Conditions. Industrial & Engineering Chemistry Fundamentals 5 (2): 212-223
- Itodo A. U, and Etim, E. E (2015). "Dynamics of M^{X+} Salts of Fatty Acids Adsorption onto Metallic Ores,"*International Journal of Environmental Science and Development* vol. 6, no. 3, pp. 205-210, 2015.

- Langmuir I. (1918) The Adsorption of Gases on a Plane Surfaces of Glass, Mina and Platinum. Journal of the American Chemical Society, 40, 1361-1403
- Pavasant P, Apiratikul R, Sungkhum V, Suthiparinyanont P, Wattanachira S, Marhaba T.F (2006) Biosorption of Cu²⁺, Cd²⁺, and Zn²⁺ using dried marine green macroalga (*Caulerpa lentillifera*). Bioresource Technology 97, 2321-2329
- Reddad, Z., Gerente, C., Andres, Y., Ralet, M. C., Thibault, J. F., and Cloirec, P. L. (2002b). "Ni (II) and Cu (II) Binding Properties of Native and Modified Sugar Beet Pulp", *Carbohyd. Polym.*, 49 (1), 23-31.
- Voudrias E, Fytianos K, Bozini E (2002) Sorption Deposition Isotherms of Dyes from Aqueous Solutions and wastewaters with different sorbent materials. Global next: the International journal 4 (1): 75-83

Citation: Emmanuel E. Etim et al."Adsorption Studies of Cu2+ using Tea Leaves and Tea Fibre (Camellia Sinensis) as Adsorbents", International Journal of Advanced Research in Chemical Science (IJARCS), vol. 9, no.2, pp. 1-10, 2022. http://dx.doi.org/10.20431/2455-7153.0902001

Copyright: © 2022 Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.