Volumetric, Ultrasonic and Infra-red Sprectroscopic Stydy of Binary Liquid Mixture of o-xylene, m-xylene and p-xylene with tbutanol at 303.15 K

Narendra A Dokhe¹, Mehdi Hasan², Aravind R Mahjan³, Pankaj S Pawar⁴

²Associate Professor, ¹Assistant Professor, ⁴Assistant Professor P.G. Department of Chemistry, M.S.G. College, Malegaon Camp Dist. Nashik 423105 Maharashtra, India

³P. G. Department of Chemistry, Jalna Education Society's R. G.Bagdia Arts, S. B. Lakhotia Commerce, R. Benzonji Science College, Jalna 431 203, Maharashtra, India. *narendradokhe@gmail.com*, *marvind22@yahoo.co.in*

Abstract: Density, speed of sound, IR of binary mixture of o-xylene, m-xylene, p-xylene with t-butanol have been measure at 303.15. The excess molar volume (V^E) and excess Isentropic compressibility K_S^E have been calculated from the experimental value.

The experimental sound velocisity data have been analysed in terms of free length theory (FLT) and collision factor theory (CFT). The experimental result are discussed in terms of intermolecular interaction between unlike molecules

Keywords: Density, Excess molar volume, ultrasonic velocity, Isentropic Compressibilities, FLT, CFT, I.R. Redlich-kister equation.

1. INTRODUCTION

A survey of the literature shows that V^E data for the binary mixture of xylne with isoalcohols (1), xylene with esters (2), xylenes with aliphatic hydrocarbons (3) have been reported. Further V^E data for a series of 1-alkanols with xylenes at 298.15 K were also reported earlier (4-5). The present work was undertaken with view of utilizing this data for further study of excess thermodynamic properties at this temperature. Isentropic compressibilities data for binary mixture of o-xylene with 1-alkanols (6) were also reported earlier, the sound velocites in binary liquid mixture can be computed theoretically at different mole fractions from jacobson's free length theory (7) (FLT) and collision factor theory (8) (CFT) of shaff's Both the theories have been succesfully appllied to binar mixture by many works (9-11) IR studies (12) of the mixture of ethyl iodide and ethyl alcohol benzene, toluene, o-xylene and p-xylene were carried out. IR spectral studies supports the conclusion drawn.

2. EXPERIMENTAL

All the chemical were used of analytical grade. t-butanol and xylenes were purified by the methods describe by Reddick and Bunger (13). The purites of samples was checked by comparing the densities of the component with those reported in literature (14-20) Densities were determined using a bicapillary type pycnometer. Density value were reproducible within $\pm 5 \times 10^{-5}$ g cm⁻³ Excess volumes were measured using the dilatometer of the type described earlier (21). Isentropic compressibilities (K_S) were computed form measure sound velocity data and density evaluated from excess volume.

The ultrasonic velocity was measured with a single crystal interferometer at 2 MHz frequency and the data were accarate to $\pm 0.15\%$ (using mittal's F-81 model). FTIR spectra were recorded on a FTIR spectrometer (model SHIMADZU 8400 PC) by using KBr pelet in the Region 400-40 cm⁻¹ (30 – 2.5 μ m)

3. RESULTS AND DISCUSSION

The experimental excess volume of three binary mixture are given table 1. V^E values were fitted to an emperical relation proposed by Redlich-kister

$$V^{E} = (x_{1} M_{1} + x_{2} M_{2})/\rho_{12} - (x_{1} M_{1}/\rho_{1}) - (x_{2} M_{2}/\rho_{2})$$
(1)

where M_1 , x_1 , ρ_1 and M_2 , x_2 , ρ_2 are molecular weight, mole fraction and density of omponents 1 and 2 respectively of binary mixtures, ρ_{12} is the mixture density.

The values of the constant are given in the Table-2 along with standard deviation 6 (V^E) data for density (ρ). Computed from measure are inclued in Table -3 Isentropic compressibility, K_S and deviation in isentropic compressibility, ΔK_S are also given in Table-3. The deviation in isentropic compressibility (ΔK_S) were calculated by using equation.

$$K_{\rm S} = (1/u^2 \rho) \tag{2}$$

 $\Delta \mathbf{K}_{\mathbf{S}} = \mathbf{K}_{\mathbf{S}12} - \phi_1 \mathbf{K}_{\mathbf{S}1} - \phi_2 \mathbf{K}_{\mathbf{S}2}$

The sound velocity data predicted in terms of free length theory (FLT) and collision factor theory (CFT) are given along with experimental result in Table-4 However the velocity of soudn predicted by FLT method are closer to experimental values.

The V^E data which is presented in Table-1 can be explained as follows. According to Treszezanowicz and Benson (22). The positive V^E values arises due to breaking of H-bonding in self association tbutanol. But te positive values of V^E no not show any regular tends and suggest that the positive V^E values are intenstive to the change length of the t-butanol.

The experimetal value of ΔK_S may be attributed to the relative streng of effects which influnced the free space (23) according to which positive values of ΔK_S , arise due to breaking of hydrogen bonds in self assolated allcanols and physical dipole-diple interaction between alconol monomers and multimers contribute to increase in free space, decrease in sound velocity and positive deviation in isentropic compressibility However, this effect will be countreacted by change of free volume in real mixture and the presence of π -electron in xylence molecules resuting in the fomtion of OH----- π electron Hydrogen-bonded complexs

IR measurement for mixture of t-butanol with xylenes over the entrie composition range has been carried out in Table-5.

The change in frequencies values of - OH.

IR frequencies of – OH group is calculated as

 $\Delta v = IR$ frequencies of – OH group of mixture – IR frequencies of –OH group in the pure t-butanol

It is seen that the Δv values are negative for xylens, it is conlued that there is varible degree of intermolecular H-bonding between the component of mixtures.

ACKNOWLEDGMENT

Authors are thankful to Principal M.S.G. College, Malegaon Camp for his help, support, encouragement and the laboratory facilities.

Table1. Mole fraction of xylenes (X_1) and Excess volume (V^E) for the mixture of o-xylene, m- xylene and pxylene with t-butanol at 303.15 J

t-butanol +	X ₁	V^E
	0.0000	0.000
	0.1003	0.169
	0.2009	0.283
	0.3016	0.383
	0.3990	0.427
o-xylene	0.4999	0.451
•	0.5998	0.426
	0.6988	0.390
	0.7997	0.287
	0.9003	0.180
	1.0000	0.000

(3)

Volumetric, Ultrasonic and Infra-red Sprectroscopic Stydy of Binary Liquid Mixture of o-xylene, m-xylene and p-xylene with t-butanol at 303.15 K

	0.0000	0.000
	0.0957	0.219
	0.1947	0.375
	0.2956	0.490
	0.4002	0.570
m-xylene	0.5001	0.600
	0.6001	0.560
	0.7003	0.487
	0.7994	0.381
	0.8995	0.200
	1.0000	0.000
	0.0000	0.000
	0.0994	0.212
	0.1972	0.362
	0.2992	0.467
	0.4004	0.527
p-xylene	0.4976	0.548
	0.6002	0.514
	0.6968	0.448
	0.7993	0.350
Ī	0.8980	0.195
	1.0000	0.000

Table2. Standard deviation and values of constant from the Redlich-Kister equation

System t-Butanol +	a ₀	a ₁	a ₂	σ
o-xylene	1.7747	0.0566	0.2051	0.0076
m-xylene	2.3604	-0.1178	0.0187	0.0082
p-xylene	2.1694	-0.1275	0.1313	0.0037

Table3. Mole fraction	$(X_1) a$	density (p)) sound	velocity	(u)isentropic	compressibility	(K_S)	and	deviation	in	is
compressibility (ΔK_S)	of t-bu	itanol + xy	lenes at	303.15 I	K.						

t-butanol +	x ₁	ρ x10 ⁻³ kg m ⁻³	u m s ⁻¹	Ks TPa ⁻¹	ΔK_S Tpa ⁻¹
	0.0000	0.8716	1333	646	0
	0.1003	0.8626	1304	682	4
	0.2009	0.8536	1277	719	7
	0.3016	0.8443	1251	757	10
	0.3990	0.8353	1226	796	12
o-xylene	0.4999	0.8257	1203	836	13
	0.5998	0.8161	1182	878	14
	0.6988	0.8062	1162	919	13
	0.7997	0.7961	1143	962	11
	0.9003	0.7855	1125	1005	6
	1.0000	0.7750	1109	1049	0
	0.0000	0.8555	1301	691	0
	0.0957	0.8479	1277	724	6
	0.1947	0.8402	1253	758	11
	0.2956	0.8323	1231	793	15
	0.4002	0.8240	1209	830	18
m-xylene	0.5001	0.8160	1190	866	19
	0.6001	0.8081	1171	903	20
	0.7003	0.8000	1154	939	18
	0.7994	0.7918	1138	976	14
	0.8995	0.7836	1123	1012	8
	1.0000	0.7750	1109	1049	0
	0.0000	0.8522	1294	701	0
p-xylene	0.0994	0.8447	1271	732	4
	0.1972	0.8374	1250	764	8

Narendra A Dokhe et al.

0.2992	0.8298	1228	799	12
0.4004	0.8222	1208	833	14
0.4976	0.8148	1190	867	16
0.6002	0.8070	1171	904	17
0.6968	0.7995	1154	939	16
0.7993	0.7913	1138	976	13
0.8980	0.7834	1123	1012	8
1.0000	0.7750	1109	1049	0

Table4. Experimental and predicted velocisity data for the binary mixture of t-butanol + xylenes at303.15 K

t huton ol 1	X1	Ultrasonic Velocity m.s ⁻¹			
t-butanol +		Expt.	CFT	FLT	
	0.0000	1333	1333	969	
	0.1003	1304	1312	975	
	0.2009	1277	1291	982	
	0.3016	1251	1270	991	
	0.3990	1226	1249	1002	
o-xylene	0.4999	1203	1227	1014	
	0.5998	1182	1205	1029	
	0.6988	1162	1182	1045	
	0.7997	1143	1158	1065	
	0.9003	1125	1133	1086	
	1.0000	1109	1109	1112	
	0.0000	1301	1301	972	
	0.0957	1277	1284	975	
	0.1947	1253	1266	981	
	0.2956	1231	1248	989	
	0.4002	1209	1229	999	
m-xylene	0.5001	1190	1210	1011	
	0.6001	1171	1191	1025	
	0.7003	1154	1171	1042	
	0.7994	1138	1151	1062	
	0.8995	1123	1130	1085	
	1.0000	1109	1109	1112	
	0.0000	1294	1294	972	
	0.0994	1271	1278	977	
	0.1972	1250	1261	983	
	0.2992	1228	1243	991	
	0.4004	1208	1225	1001	
p-xylene	0.4976	1190	1208	1012	
	0.6002	1171	1189	1027	
	0.6968	1154	1170	1043	
	0.7993	1138	1150	1063	
	0.8980	1123	1130	1085	
	1.0000	1109	1109	1112	

Table5. *IR Frequencies* $(v \ cm^{-1})$ *for t-Butanol with Xylenes*

Mole fraction of t-Butanol	v (O-H)
o-Xylene	-
0.2	3362.04
0.4	3367.82
0.5	3362.04
0.6	3348.54
0.8	3329.25
t-Butanol	3377.47

m-Xylene

Mole fraction of t-Butanol	v (O-H)
m-Xylene	-
0.2	3379.75

Volumetric, Ultrasonic and Infra-red Sprectroscopic Stydy of Binary Liquid Mixture of o-xylene, m-xylene and p-xylene with t-butanol at 303.15 K

0.4	3358.18
0.5	3350.48
0.6	3346.61
0.8	3342.88
t-Butanol	3377.47

p-Xylene

Mole fraction of t-Butanol	v (O-H)
p-Xylene	-
0.2	3373.61
0.4	3373.61
0.5	3367.82
0.6	3369.75
0.8	3331.18
t-Butanol	3377.47

Figure1. Neat FTIR -OH Frequency (cm⁻¹) Cut Section (Spectrum) of t-Butanol + o-Xylene

International Journal of Advanced Research in Chemical Science (IJARCS)

Figure2. Neat FTIR -OH Frequency (cm^{-1}) Cut Section (Spectrum) of t-Butanol + m-Xylene.

Volumetric, Ultrasonic and Infra-red Sprectroscopic Stydy of Binary Liquid Mixture of o-xylene, mxylene and p-xylene with t-butanol at 303.15 K

Figure3. Neat FTIR -OH Frequency (cm⁻¹) Cut Section (Spectrum) of t-Butanol + p-Xylene

REFERENCES

- [1] B Streenicasulu and P R Naidu, Indian J Technol, 31 (1993) 815
- [2] D Ramchandran, K Rambabu, Monhan krishan K, P Venkateswarlu and G K Raman. J Chem Eng Data 40 (1995) 815
- [3] Dolly Anwegin, E Hoffman and P munk J Chem Eng Data, 37 (1992) 61
- [4] Roderiquez-Numez E, Paz-andrade M I and R-Bravo, J Chem Termodyn 17 (1985) 817
- [5] Roderiquez-Numez E, Paz-andrade M I and J-orega, J Chem Termodyn 18 (1986) 303
- [6] C L POrabhavathi, Shiva Kumar K, P-venkateswarulu and G K Raman, Indian J Chem Technol, 10 (2003) 21
- [7] B Jacobson, J Chem Phys, 20 (1975) 927
- [8] W Schaafs, Z-phys, 69 (1940) 115
- [9] M.V. kaulgud, Acustica, 10 (1971) 316

International Journal of Advanced Research in Chemical Science (IJARCS)

- [10] P Venkateswarlue, N.V Choudary, A Krishnaiah, and Raman G.K, Phys Chem Liq. 15 (1986) 203
- [11] N.V Chowdary, G S Ramanurthy, G S Sastry, and P R Naidu, indian J pure and Appl. Phys 22 (1984) 409
- [12] K C Singh, L C Kalva, Prashkumar, indian J Chem, 29A (1990) 779
- [13] J A Riddick and W B Bunger, organic Solvents Techniques of chemistry, 2 (1970)
- [14] J A Riddick, WB Bunger, T K Sakango, Organic Solvent willey interscenc, New York, 2 (1986)
- [15] P.M. Lewis, N W Haward, F Vistech, J Chem Eng Data, 20 (1954) 417
- [16] R P Singh, C P Sing, J Chem Eng Data, 29 (1984) 32
- [17] S Martinez, R Garriga, P Perez, MGracia, J Chem Eng Data 45 (2000) 1182
- [18] R C Weast Hand book of Chem phys, express (1982-1983)
- [19] R K Nigam, P P Singh, Indian J Chem, 9 (1971) 697
- [20] N V Sastry, R R Thakkor, N C Patel J Mol Liquid 144 (2009) 13
- [21] M V P Rao and P R Naidu, can J Chem, 52 (1974) 788
- [22] A J trezczanowicz, C Benson. J Chem Thermodyn, 10 (1978) 967
- [23] B Jcobson, Arkiv Kemi, 2 (1953) 77